Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Structure-Activity Relationships of Benzothiazole and Benzimidazole Anthelmintics: A Molecular Modeling Approach to In vivo Drug Efficacy

R. O. McCracken and K. B. Lipkowitz
The Journal of Parasitology
Vol. 76, No. 6 (Dec., 1990), pp. 853-864
DOI: 10.2307/3282805
Stable URL: http://www.jstor.org/stable/3282805
Page Count: 12
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Structure-Activity Relationships of Benzothiazole and Benzimidazole Anthelmintics: A Molecular Modeling Approach to In vivo Drug Efficacy
Preview not available

Abstract

An investigation of the biochemical effects of an anthelmintic, tioxidazole (TIOX, methyl 6-[n-propoxy]benzothiazole-2-carbamate), on Hymenolepis diminuta in experimentally infected rats is reported. The chemotherapeutic actions of TIOX on H. diminuta in vivo were accompanied by marked changes in worm weight and chemical composition. Tapeworms recovered from rats that had received a therapeutically effective dose of TIOX 24 hr earlier were significantly smaller and contained much less glycogen (as a percentage of the wet weight) than worms from untreated controls. In TIOX-treated worms, protein concentrations rose at a rate sufficient to offset the decline in glycogen concentration. Glycogen/protein ratios in TIOX-treated worms were considerably lower than the corresponding control values. Differences in the absolute amounts of glycogen and protein between control and drug-treated worms were even more pronounced. Administration of a subcurative dose of TIOX to the rat produced in H. diminuta another change, the onset of which preceded the gross alterations in worm weight and chemical composition. In vitro studies, carried out 18 hr after treatment, revealed that TIOX-treated worms absorbed and metabolized much smaller quantities of exogenous glucose than did the controls and that the ability of the worm to accumulate glucose against a concentration difference was significantly depressed. A mode of action common to the structurally related benzothiazole and benzimidazole anthelmintics is indicated by the similarity of their biochemical and physiological effects on the tapeworms and their time course of action when administered to rats infected with H. diminuta. Molecular modeling revealed that the benzothiazole and benzimidazole anthelmintics are congruent electronically and structurally. In vivo drug efficacy depends upon the magnitude of the molecular dipole moment and the percentage of polar surface area. Within the benzimidazole series, structural and electronic congruence is found between the 2-thiazolyl and 2-methyl carbamate groups, suggesting that these groups behave similarly in transport to, and binding at, the active site. Finally, anthelmintics that have the 5′ substituents twisted out-of-plane were more active than those anthelmintics with 5′ substituents in-plane. All of these factors implicate a highly polar, L-shaped cleft to which the anthelmintics bind at the active site.

Page Thumbnails

  • Thumbnail: Page 
853
    853
  • Thumbnail: Page 
854
    854
  • Thumbnail: Page 
855
    855
  • Thumbnail: Page 
856
    856
  • Thumbnail: Page 
857
    857
  • Thumbnail: Page 
858
    858
  • Thumbnail: Page 
859
    859
  • Thumbnail: Page 
860
    860
  • Thumbnail: Page 
861
    861
  • Thumbnail: Page 
862
    862
  • Thumbnail: Page 
863
    863
  • Thumbnail: Page 
864
    864