Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Mechanism of Lysis of Trypanosoma brucei gambiense by Human Serum

Juan Carlos Ortiz-Ordóñez, John B. Sechelski and John R. Seed
The Journal of Parasitology
Vol. 80, No. 6 (Dec., 1994), pp. 924-930
DOI: 10.2307/3283441
Stable URL: http://www.jstor.org/stable/3283441
Page Count: 7
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Mechanism of Lysis of Trypanosoma brucei gambiense by Human Serum
Preview not available

Abstract

Resistance to lysis by human serum (HS) is an important parameter used to distinguish Trypanosoma brucei brucei from both Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense. Neither the exact nature of the trypanolytic factor (TLF) nor the mechanism of action by which HS lyses susceptible trypanosomes is well understood. This report tries to elucidate the role played by the variable surface glycoprotein (VSG) coat and trypanosome surface-related processes in the mechanism of HS lysis of HS-sensitive (HSS) and HS-resistant (HSR) trypanosomes. Procyclic forms of T. brucei gambiense transformed from either HSS or HSR bloodstream stages were found to be HSR. These procyclic forms were shown to have lost their VSG coat. However, the addition of excess soluble VSG from HSS trypanosomes did not block lysis of HSS trypanosomes. Human serum lysis was significantly inhibited if the trypanosomes were incubated with membrane stabilizers, i.e., including cytochalasins (B, D, and E specifically), zinc acetate, vinblastine, and benzyl alcohol, or with the lysosomotropic agents ammonium chloride and chloroquine. The inhibition exerted by these compounds was always reversible. The results in this report, taken together, strengthen the hypothesis that the lytic factor interacts with and moves along the trypanosome surface to be internalized eventually.

Page Thumbnails

  • Thumbnail: Page 
924
    924
  • Thumbnail: Page 
925
    925
  • Thumbnail: Page 
926
    926
  • Thumbnail: Page 
927
    927
  • Thumbnail: Page 
928
    928
  • Thumbnail: Page 
929
    929
  • Thumbnail: Page 
930
    930