Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Plant Diversity of the Cape Region of Southern Africa

Peter Goldblatt and John C. Manning
Annals of the Missouri Botanical Garden
Vol. 89, No. 2 (Spring, 2002), pp. 281-302
DOI: 10.2307/3298566
Stable URL: http://www.jstor.org/stable/3298566
Page Count: 22
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Plant Diversity of the Cape Region of Southern Africa
Preview not available

Abstract

Comprising a land area of ca. 90,000 km2, less than one twentieth (5%) the land area of the southern African subcontinent, the Cape Floristic Region (CFR) is, for its size, one of the world's richest areas of plant species diversity. A new synoptic flora for the Region has made possible an accurate reassessment of the flora, which has an estimated 9030 vascular plant species (68.7% endemic), of which 8920 species are flowering plants (69.5% endemic). The number of species packed into so small an area is remarkable for the temperate zone and compares favorably with species richness for areas of similar size in the wet tropics. The Cape region consists of a mosaic of sandstone and shale substrata with local areas of limestone. It has a highly dissected, rugged topography, and a diversity of climates with rainfall mostly falling in the winter months and varying from 2000 mm locally to less than 100 mm. Ecological gradients are steep as a result of abrupt differences in soil, altitude, aspect, and precipitation. These factors combine to form an unusually large number of local habitats for plants. Sandstone-derived soils have characteristically low nutrient status, and many plants present on such soils have low seed dispersal capabilities, a factor promoting localized distributions. An unusual family composition includes Iridaceae, Aizoaceae, Ericaceae, Scrophulariaceae, Proteaceae, Restionaceae, Rutaceae, and Orchidaceae among the 10 largest families in the flora, following Asteraceae and Fabaceae, as the most speciose families. Disproportionate radiation has resulted in over 59.2% species falling in the 10 largest families and 77.4% in the largest 20 families. Twelve genera have more than 100 species and the 20 largest genera contribute some 31% of the total species. Species richness of the Cape flora is hypothesized to be the result of geographic and parapatric radiation in an area with a mosaic of different habitats due to local soil, climate, and altitudinal differences that combine to produce steep ecological gradients. Also contributing to the diversity has been a relatively stable geological history since the end of the Miocene that saw the establishment of a semi-arid and extreme seasonal climate at the southwestern part of southern Africa.

Page Thumbnails

  • Thumbnail: Page 
[281]
    [281]
  • Thumbnail: Page 
282
    282
  • Thumbnail: Page 
283
    283
  • Thumbnail: Page 
284
    284
  • Thumbnail: Page 
285
    285
  • Thumbnail: Page 
286
    286
  • Thumbnail: Page 
287
    287
  • Thumbnail: Page 
288
    288
  • Thumbnail: Page 
289
    289
  • Thumbnail: Page 
290
    290
  • Thumbnail: Page 
291
    291
  • Thumbnail: Page 
292
    292
  • Thumbnail: Page 
293
    293
  • Thumbnail: Page 
294
    294
  • Thumbnail: Page 
295
    295
  • Thumbnail: Page 
296
    296
  • Thumbnail: Page 
297
    297
  • Thumbnail: Page 
298
    298
  • Thumbnail: Page 
299
    299
  • Thumbnail: Page 
300
    300
  • Thumbnail: Page 
301
    301
  • Thumbnail: Page 
302
    302