Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

MRI Detection of Single Particles for Cellular Imaging

Erik M. Shapiro, Stanko Skrtic, Kathryn Sharer, Jonathan M. Hill, Cynthia E. Dunbar, Alan P. Koretsky and Mildred Cohn
Proceedings of the National Academy of Sciences of the United States of America
Vol. 101, No. 30 (Jul. 27, 2004), pp. 10901-10906
Stable URL: http://www.jstor.org/stable/3372825
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
MRI Detection of Single Particles for Cellular Imaging
Preview not available

Abstract

There is rapid growth in the use of MRI for molecular and cellular imaging. Much of this work relies on the high relaxivity of nanometer-sized, ultrasmall dextran-coated iron oxide particles. Typically, millions of dextran-coated ultrasmall iron oxide particles must be loaded into cells for efficient detection. Here we show that single, micrometer-sized iron oxide particles (MPIOs) can be detected by MRI in vitro in agarose samples, in cultured cells, and in mouse embryos. Experiments studying effects of MRI resolution and particle size from 0.76 to 1.63 μm indicated that T2 * effects can be readily detected from single MPIOs at 50-μm resolution and significant signal effects could be detected at resolutions as low as 200 μm. Cultured cells were labeled with fluorescent MPIOs such that single particles were present in individual cells. These single particles in single cells could be detected both by MRI and fluorescence microscopy. Finally, single particles injected into single-cell-stage mouse embryos could be detected at embryonic day 11.5, demonstrating that even after many cell divisions, daughter cells still carry individual particles. These results demonstrate that MRI can detect single particles and indicate that single-particle detection will be useful for cellular imaging.

Page Thumbnails

  • Thumbnail: Page 
[10901]
    [10901]
  • Thumbnail: Page 
10902
    10902
  • Thumbnail: Page 
10903
    10903
  • Thumbnail: Page 
10904
    10904
  • Thumbnail: Page 
10905
    10905
  • Thumbnail: Page 
10906
    10906