Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Identification of a Nematode Chemosensory Gene Family

Nansheng Chen, Shraddha Pai, Zhongying Zhao, Allan Mah, Rebecca Newbury, Robert C. Johnsen, Zeynep Altun, Donald G. Moerman, David L. Baillie, Lincoln D. Stein and Robert H. Waterston
Proceedings of the National Academy of Sciences of the United States of America
Vol. 102, No. 1 (Jan. 4, 2005), pp. 146-151
Stable URL: http://www.jstor.org/stable/3374141
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Identification of a Nematode Chemosensory Gene Family
Preview not available

Abstract

Taking advantage of the recent availability of the whole genome sequence of Caenorhabditis briggsae, a closely related nematode to Caenorhabditis elegans, we have examined the chemosensory gene superfamily by using comparative genomic methods. We have identified a chemosensory gene family, serpentine receptor class ab (srab), which exists in both species with 25 members in C. elegans and 14 members in C. briggsae. More than 20% of these gene models are reannotated. The srab family is similar to, but distinct from, the previously described serpentine receptor class a (sra) family and shows a differential expansion in C. elegans similar to that previously described for sra. The cellular expression patterns for multiple members of the srab family in both phasmid neurons in the tail and amphid neurons in the head supports the conclusion that they are chemosensory genes and suggests that they may play a role in integrating chemosensory inputs from both ends of the organism. The expansion of both the srab and sra gene families in C. elegans relative to C. briggsae is due to multiple rounds of tandem duplication and translocation of individual genes.

Page Thumbnails

  • Thumbnail: Page 
[146]
    [146]
  • Thumbnail: Page 
147
    147
  • Thumbnail: Page 
148
    148
  • Thumbnail: Page 
149
    149
  • Thumbnail: Page 
150
    150
  • Thumbnail: Page 
151
    151