Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Essential Role for Smooth Muscle BK Channels in Alcohol-Induced Cerebrovascular Constriction

Pengchong Liu, Qi Xi, Abu Ahmed, Jonathan H. Jaggar and Alejandro M. Dopico
Proceedings of the National Academy of Sciences of the United States of America
Vol. 101, No. 52 (Dec. 28, 2004), pp. 18217-18222
Stable URL: http://www.jstor.org/stable/3374220
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Essential Role for Smooth Muscle BK Channels in Alcohol-Induced
              Cerebrovascular Constriction
Preview not available

Abstract

Binge drinking is associated with increased risk for cerebrovascular spasm and stroke. Acute exposure to ethanol at concentrations obtained during binge drinking constricts cerebral arteries in several species, including humans, but the mechanisms underlying this action are largely unknown. In a rodent model, we used fluorescence microscopy, patch-clamp electrophysiology, and pharmacological studies in intact cerebral arteries to pinpoint the molecular effectors of ethanol cerebrovascular constriction. Clinically relevant concentrations of ethanol elevated wall intracellular Ca2+ concentration and caused a reversible constriction of cerebral arteries ( EC50=27 mM; E max=100 mM) that depended on voltage-gated Ca2+ entry into myocytes. However, ethanol did not directly increase voltage-dependent Ca2+ currents in isolated myocytes. Constriction occurred because of an ethanol reduction in the frequency (-53%) and amplitude (-32%) of transient Ca2+-activated Ca2+ (BK) currents. Ethanol inhibition of BK transients was caused by a reduction in Ca2+ spark frequency (-49%), a subsarcolemmal Ca2+ signal that evokes the BK transients, and a direct inhibition of BK channel steady-state activity (-44%). In contrast, ethanol failed to modify Ca2+ waves, a major vasoconstrictor mechanism. Selective block of BK channels largely prevented ethanol constriction in pressurized arteries. This study pinpoints the Ca2+ spark/BK channel negative-feedback mechanism as the primary effector of ethanol vasoconstriction.

Page Thumbnails

  • Thumbnail: Page 
[18217]
    [18217]
  • Thumbnail: Page 
18218
    18218
  • Thumbnail: Page 
18219
    18219
  • Thumbnail: Page 
18220
    18220
  • Thumbnail: Page 
18221
    18221
  • Thumbnail: Page 
18222
    18222