Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Chromatographic Modeling of the Release of Particle-Adsorbed Molecules into Synthetic Alveolar Surfactant

Shelley S. Sehnert and Terence H. Risby
Environmental Health Perspectives
Vol. 78 (Jun., 1988), pp. 185-195
DOI: 10.2307/3430520
Stable URL: http://www.jstor.org/stable/3430520
Page Count: 11
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Chromatographic Modeling of the Release of Particle-Adsorbed Molecules into Synthetic Alveolar Surfactant
Preview not available

Abstract

Pseudophase liquid chromatography was used to measure the thermodynamic parameters governing adsorption of organic molecules from the surfaces of carbonaceous particles into liposomal zwitterionic mobile phases. These mobile phases contain many of the important physicochemical parameters of alveolar surfactant. Results show that physical desorption into model surfactant will be dependent upon the heat of solution and the heat of adsorption. Dominance of either thermodynamic parameter is dependent upon the relative polarity of the adsorbent surface and the adsorbate molecule. It is postulated from data obtained from simple molecules containing relevant organic functional groups that physical desorption of environmental agents from the surfaces of particulate complexes into alveolar surfactant may be predicted both by quantification of the polarity of the system and of the extent of surface coverage under investigation.

Page Thumbnails

  • Thumbnail: Page 
[185]
    [185]
  • Thumbnail: Page 
186
    186
  • Thumbnail: Page 
187
    187
  • Thumbnail: Page 
188
    188
  • Thumbnail: Page 
189
    189
  • Thumbnail: Page 
190
    190
  • Thumbnail: Page 
191
    191
  • Thumbnail: Page 
192
    192
  • Thumbnail: Page 
193
    193
  • Thumbnail: Page 
194
    194
  • Thumbnail: Page 
195
    195