Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Oxidation of DNA Bases by Tumor Promoter-Activated Processes

Krystyna Frenkel
Environmental Health Perspectives
Vol. 81 (May, 1989), pp. 45-54
DOI: 10.2307/3430803
Stable URL: http://www.jstor.org/stable/3430803
Page Count: 10
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Oxidation of DNA Bases by Tumor Promoter-Activated Processes
Preview not available

Abstract

Evidence has accumulated showing that active oxygen species participate in at least one stage of tumor promotion. Tumor promoters can induce various types of cells to undergo processes that result in formation of active oxygen species. They stimulate polymorphonuclear leukocytes (PMNs) to undergo an oxidative burst that is characterized by rapid formation of ${}^{\bullet}{\rm O}_{2}^{-}$ and H2 O2. We find that in vitro formation of H2 O2 by tumor promoter-activated PMNs correlates with their in vivo first-stage promoting activity. Moreover, two thymidine derivatives are formed in DNA coincubated with tumor promoter-stimulated PMNs: 5-hydroxymethyl-2′-deoxyuridine (HMdU) and thymidine glycol (dTG). The amounts of HMdU and dTG formed correlate with the first-stage tumor-promoting potencies of the agents used for PMN stimulation and with the amount of H2 O2 generated. We find that HMdU is also formed in the DNA of HeLa cells coincubated with 12-O-tetradecanoylphorbol-13-acetate (TPA)-activated PMNs, with the amount of HMdU being proportional to that of TPA used. Even in the absence of PMNs, HMdU is increasingly formed in cellular DNA with increased TPA concentration, although at much lower levels than in the presence of PMNs. When rat liver microsomes are incubated with benzo[a]pyrene (BaP), a complete carcinogen, H2 O2 is also generated. Production of H2 O2 increases linearly with increasing concentrations of BaP. Furthermore, HMdU is formed in DNA exposed to BaP-treated microsomes, and its formation is inhibited by catalase. These results suggest that carcinogen-induced processes generating H2 O2 are associated with the first-stage promoting activity of complete carcinogens.

Page Thumbnails

  • Thumbnail: Page 
[45]
    [45]
  • Thumbnail: Page 
46
    46
  • Thumbnail: Page 
47
    47
  • Thumbnail: Page 
48
    48
  • Thumbnail: Page 
49
    49
  • Thumbnail: Page 
50
    50
  • Thumbnail: Page 
51
    51
  • Thumbnail: Page 
52
    52
  • Thumbnail: Page 
53
    53
  • Thumbnail: Page 
54
    54