Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Carcinogen Adducts As an Indicator for the Public Health Risks of Consuming Carcinogen-Exposed Fish and Shellfish

Bruce P. Dunn
Environmental Health Perspectives
Vol. 90 (Jan., 1991), pp. 111-116
DOI: 10.2307/3430852
Stable URL: http://www.jstor.org/stable/3430852
Page Count: 6
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Carcinogen Adducts As an Indicator for the Public Health Risks of Consuming Carcinogen-Exposed Fish and Shellfish
Preview not available

Abstract

A large variety of environmental carcinogens are metabolically activated to electrophilic metabolites that can bind to nucleic acids and protein, forming covalent adducts. The formation of DNA-carcinogen adducts is thought to be a necessary step in the action of most carcinogens. Recently, a variety of new fluorescence, immunochemical, and radioactive-postlabeling procedures have been developed that allow the sensitive measurement of DNA-carcinogen adducts in organisms exposed to environmental carcinogens. In some cases, similar procedures have been developed for protein-carcinogen adducts. In an organism with active metabolic systems for a given carcinogen, adducts are generally much longer lived than the carcinogens that formed them. Thus, the detection of DNA- or protein-carcinogen adducts in aquatic foodstuffs can act as an indicator of prior carcinogen exposure. The presence of DNA adducts would, in addition, suggest a mutagenic/carcinogenic risk to the aquatic organism itself. Vertebrate fish are characterized by high levels of carcinogen metabolism, low body burdens of carcinogen, the formation of carcinogen-macromolecule adducts, and the occurrence of pollution-related tumors. Shellfish, on the other hand, have low levels of carcinogen metabolism, high body burdens of carcinogen, and have little or no evidence of carcinogen-macromolecule adducts or tumors. The consumption of carcinogen adducts in aquatic foodstuffs is unlikely to represent a human health hazard. There are no metabolic pathways by which protein-carcinogen or DNA-carcinogen adducts could reform carcinogens. Incorporation via salvage pathways of preformed mucleoside-carcinogen adducts from foodstuffs into newly synthesized human DNA is theoretically possible. However, absolute levels of nucleoside-carcinogen levels in aquatic foodstuffs from polluted areas are very low, and the incorporation of preformed adducts into DNA is strongly discriminated against by the fidelity of DNA synthesis.

Page Thumbnails

  • Thumbnail: Page 
[111]
    [111]
  • Thumbnail: Page 
112
    112
  • Thumbnail: Page 
113
    113
  • Thumbnail: Page 
114
    114
  • Thumbnail: Page 
115
    115
  • Thumbnail: Page 
116
    116