Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Biosurfactant-Facilitated Remediation of Metal-Contaminated Soils

Raina M. Miller
Environmental Health Perspectives
Vol. 103, Supplement 1: Fate, Transport, and Interactions of Metals (Feb., 1995), pp. 59-62
DOI: 10.2307/3432014
Stable URL: http://www.jstor.org/stable/3432014
Page Count: 4
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Biosurfactant-Facilitated Remediation of Metal-Contaminated Soils
Preview not available

Abstract

Bioremediation of metal-contaminated wastestreams has been successfully demonstrated. Normally, whole cells or microbial exopolymers are used to concentrate and/or precipitate metals in the wastestream to aid in metal removal. Analogous remediation of metal-contaminated soils is more complex because microbial cells or large exopolymers do not move freely through the soil. The use of microbially produced surfactants (biosurfactants) is an alternative with potential for remediation of metal-contaminated soils. The distinct advantage of biosurfactants over whole cells or exopolymers is their small size, generally biosurfactant molecular weights are less than 1500. A second advantage is that biosurfactants have a wide variety of chemical structures that may show different metal selectivities and thus, metal removal efficiencies. A review of the literature shows that complexation capacities of several bacterial exopolymers was similar to the complexation capacity of a rhamnolipid biosurfactant produced by Pseudomonas aeruginosa ATCC 9027.

Page Thumbnails

  • Thumbnail: Page 
59
    59
  • Thumbnail: Page 
60
    60
  • Thumbnail: Page 
61
    61
  • Thumbnail: Page 
62
    62