Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Evaluation of a Possible Association of Urban Air Toxics and Asthma

George D. Leikauf, Sharon Kline, Roy E. Albert, C. Stuart Baxter, David I. Bernstein, Jonathan Bernstein and C. Ralph Buncher
Environmental Health Perspectives
Vol. 103, Supplement 6 (Sep., 1995), pp. 253-271
DOI: 10.2307/3432382
Stable URL: http://www.jstor.org/stable/3432382
Page Count: 19
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Evaluation of a Possible Association of Urban Air Toxics and Asthma
Preview not available

Abstract

The prevalence of asthma, measured either as the frequency of hospital admissions or number of deaths attributed to asthma, has increased over the last 15 to 20 years. Rapid increases in disease prevalence are more likely to be attributable to environmental than genetic factors. Inferring from past associations between air pollution and asthma, it is feasible that changes in the ambient environment could contribute to this increase in morbidity and mortality. Scientific evaluation of the links between air pollution and the exacerbation of asthma is incomplete, however. Currently, criteria pollutants [ SO x, NO x, O3, CO, Pb, particulate matter ( PM10)] and other risk factors (exposure to environmental tobacco smoke, volatile organic compounds, etc.) are constantly being evaluated as to their possible contributions to this situation. Data from these studies suggest that increases in respiratory disease are associated with exposures to ambient concentrations of particulate and gaseous pollutants. Similarly, exposure to environmental tobacco smoke, also a mixture of particulate and gaseous air toxics, has been associated with an increase in asthma among children. In addition, current associations of adverse health effects with existing pollution measurements are often noted at concentrations below those that produce effects in controlled animal and human exposures to each pollutant alone. These findings imply that adverse responses are augmented when persons are exposed to irritant mixtures of particles and gases and that current measurements of air pollution are, in part, indirect in that the concentrations of criteria pollutants are acting as surrogates of our exposure to a complex mixture. Other irritant air pollutants, including certain urban air toxics, are associated with asthma in occupational settings and may interact with criteria pollutants in ambient air to exacerbate asthma. An evaluation of dose-response information for urban air toxics and biological feasibility as possible contributors to asthma is therefore needed. However, this evaluation is compounded by a lack of information on the concentrations of these compounds in the ambient air and their effects on asthma morbidity and mortality. Through an initial review of the current toxicological literature, we propose a tentative list of 30 compounds that could have the highest impact on asthma and respiratory health. These compounds were selected based on their ability to induce or exacerbate asthma in occupational and nonoccupational settings, their allergic potential and ability to react with biological macromolecules, and lastly, their ability to irritate the respiratory passages. We recommend better documentation of exposure to these compounds through routine air sampling and evaluation of total exposure and further evaluation of biological mechanisms through laboratory and epidemiological studies directed specifically at the role these substances play in the induction and exacerbation of asthma.

Page Thumbnails

  • Thumbnail: Page 
253
    253
  • Thumbnail: Page 
254
    254
  • Thumbnail: Page 
255
    255
  • Thumbnail: Page 
256
    256
  • Thumbnail: Page 
257
    257
  • Thumbnail: Page 
258
    258
  • Thumbnail: Page 
259
    259
  • Thumbnail: Page 
260
    260
  • Thumbnail: Page 
261
    261
  • Thumbnail: Page 
262
    262
  • Thumbnail: Page 
263
    263
  • Thumbnail: Page 
264
    264
  • Thumbnail: Page 
265
    265
  • Thumbnail: Page 
266
    266
  • Thumbnail: Page 
267
    267
  • Thumbnail: Page 
268
    268
  • Thumbnail: Page 
269
    269
  • Thumbnail: Page 
270
    270
  • Thumbnail: Page 
271
    271