Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

A Lung Retention Model Based on Michaelis-Menten-Like Kinetics

Rong Chun Yu and Stephen M. Rappaport
Environmental Health Perspectives
Vol. 105, No. 5 (May, 1997), pp. 496-503
DOI: 10.2307/3433577
Stable URL: http://www.jstor.org/stable/3433577
Page Count: 8
  • Get Access
  • Read Online (Free)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Preview not available
Preview not available

Abstract

A Michaelis-Menten (MM)-like kinetic model for pulmonary clearance and retention of insoluble dusts was developed and validated by comparing our predictions with experimental data from F344 rats. Published data from inhalation studies involving accumulation and elimination of photocopy test toner, antimony trioxide, carbon black, and diesel exhaust particles were investigated. Numerical integration techniques were used to solve mass balance relationships based upon dust retention in a single lung compartment and clearance via an MM-like kinetic process. The model fit most of the experimental data well. The parameters of MM-like clearance kinetics, which had been derived strictly from the elimination phase, accurately predicted dust retention during the elimination as well as accumulation phases. Furthermore, parameters estimated from one study could accurately predict retention of the same dust in other studies. Particle density and gender of the animals had no effect on the goodness of fit of model predictions. This study suggests that MM-like kinetics offer a reasonable description of particle clearance from the pulmonary region of the rat lung that is more parsimonious than existing particle-clearance models and therefore more suitable for use with small amounts of data.

Page Thumbnails

  • Thumbnail: Page 
496
    496
  • Thumbnail: Page 
497
    497
  • Thumbnail: Page 
498
    498
  • Thumbnail: Page 
499
    499
  • Thumbnail: Page 
500
    500
  • Thumbnail: Page 
501
    501
  • Thumbnail: Page 
502
    502
  • Thumbnail: Page 
503
    503