If you need an accessible version of this item please contact JSTOR User Support

Toxic Equivalency Factors (TEFs) for PCBs, PCDDs, PCDFs for Humans and Wildlife

Martin Van den Berg, Linda Birnbaum, Albertus T. C. Bosveld, Björn Brunström, Philip Cook, Mark Feeley, John P. Giesy, Annika Hanberg, Ryuichi Hasegawa, Sean W. Kennedy, Timothy Kubiak, John Christian Larsen, F. X. Rolaf van Leeuwen, A. K. Djien Liem, Cynthia Nolt, Richard E. Peterson, Lorenz Poellinger, Stephen Safe, Dieter Schrenk, Donald Tillitt, Mats Tysklind, Maged Younes, Fredrik Wærn and Tim Zacharewski
Environmental Health Perspectives
Vol. 106, No. 12 (Dec., 1998), pp. 775-792
DOI: 10.2307/3434121
Stable URL: http://www.jstor.org/stable/3434121
Page Count: 18
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Preview not available
Preview not available

Abstract

An expert meeting was organized by the World Health Organization (WHO) and held in Stockholm on 15-18 June 1997. The objective of this meeting was to derive consensus toxic equivalency factors (TEFs) for polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) and dioxinlike polychlorinated biphenyls (PCBs) for both human, fish, and wildlife risk assessment. Based on existing literature data, TEFs were (re)evaluated and either revised (mammals) or established (fish and birds). A few mammalian WHO-TEFs were revised, including 1,2,3,7,8-pentachlorinated DD, octachlorinated DD, octachlorinated DF, and PCB 77. These mammalian TEFs are also considered applicable for humans and wild mammalian species. Furthermore, it was concluded that there was insufficient in vivo evidence to continue the use of TEFs for some di-ortho PCBs, as suggested earlier by Ahlborg et al. [Chemosphere 28:1049-1067 (1994)]. In addition, TEFs for fish and birds were determined. The WHO working group attempted to harmonize TEFs across different taxa to the extent possible. However, total synchronization of TEFs was not feasible, as there were orders of a magnitude difference in TEFs between taxa for some compounds. In this respect, the absent or very low response of fish to mono-ortho PCBs is most noticeable compared to mammals and birds. Uncertainties that could compromise the TEF concept were also reviewed, including nonadditive interactions, differences in shape of the dose-response curve, and species responsiveness. In spite of these uncertainties, it was concluded that the TEF concept is still the most plausible and feasible approach for risk assessment of halogenated aromatic hydrocarbons with dioxinlike properties.

Page Thumbnails

  • Thumbnail: Page 
775
    775
  • Thumbnail: Page 
776
    776
  • Thumbnail: Page 
777
    777
  • Thumbnail: Page 
778
    778
  • Thumbnail: Page 
779
    779
  • Thumbnail: Page 
780
    780
  • Thumbnail: Page 
781
    781
  • Thumbnail: Page 
782
    782
  • Thumbnail: Page 
783
    783
  • Thumbnail: Page 
784
    784
  • Thumbnail: Page 
785
    785
  • Thumbnail: Page 
786
    786
  • Thumbnail: Page 
787
    787
  • Thumbnail: Page 
788
    788
  • Thumbnail: Page 
789
    789
  • Thumbnail: Page 
790
    790
  • Thumbnail: Page 
791
    791
  • Thumbnail: Page 
792
    792