Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Differential Expression of Human Metallothionein Isoform I mRNA in Human Proximal Tubule Cells Exposed to Metals

Scott H. Garrett, Seema Somji, John H. Todd, Mary Ann Sens and Donald A. Sens
Environmental Health Perspectives
Vol. 106, No. 12 (Dec., 1998), pp. 825-831
DOI: 10.2307/3434126
Stable URL: http://www.jstor.org/stable/3434126
Page Count: 7
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Differential Expression of Human Metallothionein Isoform I mRNA in Human Proximal Tubule Cells Exposed to Metals
Preview not available

Abstract

In contrast to the single metallothionein (MT)-1 gene of the mouse, the human MT-1 gene family is composed of seven active genes and six pseudogenes. In this study, the expression of mRNA representing the seven active human MT-1 genes was determined in cultured human proximal tubule (HPT) cells under basal conditions and after exposure to the metals Cd2+, Zn2+, Cu2+, Hg2+, Ag2+, and Pb2+. Basal expression of MT-1X and MT-1E mRNA in HPT cells was similar to expression of the housekeeping gene glyceraldehyde 3-phosphate dehydrogenase. In contrast, mRNAs representing the basal expression of MT-1A and MT-1F were a minor transcript in HPT cells. Treatment of HPT cells with Cd2+, Zn2+, or Cu2+ increased the levels of MT-1E and MT-1A mRNA, but not the levels of MT-1X or MT-1F mRNA. The increase in MT-1E mRNA appeared to be influenced mainly by exposure to the various metals, whereas the increase in MT-1A mRNA was influenced more by exposure to a metal concentration eliciting a loss of cell viability. Treatment of HPT cells with the metals Hg2+, Ag2+, and Pb2+ was found to have no effect on the level of MT-1 mRNA at either sublethal or lethal concentrations. Using HPT cells as a model, these results suggest that new features of MT gene expression have been acquired in the human due to the duplication of the MT-1 gene.

Page Thumbnails

  • Thumbnail: Page 
825
    825
  • Thumbnail: Page 
826
    826
  • Thumbnail: Page 
827
    827
  • Thumbnail: Page 
828
    828
  • Thumbnail: Page 
829
    829
  • Thumbnail: Page 
830
    830
  • Thumbnail: Page 
831
    831