Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

The Genetic Basis for Fruit Odor Discrimination in Rhagoletis Flies and Its Significance for Sympatric Host Shifts

Hattie R. Dambroski, Charles Linn, Jr., Stewart H. Berlocher, Andrew A. Forbes, Wendell Roelofs and Jeffrey L. Feder
Evolution
Vol. 59, No. 9 (Sep., 2005), pp. 1953-1964
Stable URL: http://www.jstor.org/stable/3449124
Page Count: 12
  • Read Online (Free)
  • Download ($4.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The Genetic Basis for Fruit Odor Discrimination in Rhagoletis Flies and Its Significance for Sympatric Host Shifts
Preview not available

Abstract

Rhagoletis pomonella (Diptera: Tephritidae) use volatile compounds emitted from the surface of ripening fruit as important chemosensory cues for recognizing and distinguishing among alternative host plants. Host choice is of evolutionary significance in Rhagoletis because these flies mate on or near the fruit of their respective host plants. Differences in host choice based on fruit odor discrimination therefore result in differential mate choice and prezygotic reproductive isolation, facilitating sympatric speciation in the absence of geographic isolation. We test for a genetic basis for host fruit odor discrimination through an analysis of F2 and backcross hybrids constructed between apple-, hawthorn-, and flowering dogwood-infesting Rhagoletis flies. We recovered a significant proportion (30-65%) of parental apple, hawthorn, and dogwood fly response phenotypes in F2 hybrids, despite the general failure of F1 hybrids to reach odor source spheres. Segregation patterns in F2 and backcross hybrids suggest that only a modest number of allelic differences at a few loci may underlie host fruit odor discrimination. In addition, a strong bias was observed for F2 and backcross flies to orient to the natal fruit blend of their maternal grandmother, implying the existence of cytonuclear gene interactions. We explore the implications of our findings for the evolutionary dynamics of sympatric host race formation and speciation.

Page Thumbnails

  • Thumbnail: Page 
1953
    1953
  • Thumbnail: Page 
1954
    1954
  • Thumbnail: Page 
1955
    1955
  • Thumbnail: Page 
1956
    1956
  • Thumbnail: Page 
1957
    1957
  • Thumbnail: Page 
1958
    1958
  • Thumbnail: Page 
1959
    1959
  • Thumbnail: Page 
1960
    1960
  • Thumbnail: Page 
1961
    1961
  • Thumbnail: Page 
1962
    1962
  • Thumbnail: Page 
1963
    1963
  • Thumbnail: Page 
1964
    1964