Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Quantile Regression Reveals Hidden Bias and Uncertainty in Habitat Models

Brian S. Cade, Barry R. Noon and Curtis H. Flather
Ecology
Vol. 86, No. 3 (Mar., 2005), pp. 786-800
Published by: Wiley
Stable URL: http://www.jstor.org/stable/3450672
Page Count: 15
  • Download ($42.00)
  • Subscribe ($19.50)
  • Cite this Item
Quantile Regression Reveals Hidden Bias and Uncertainty in Habitat Models
Preview not available

Abstract

We simulated the effects of missing information on statistical distributions of animal response that covaried with measured predictors of habitat to evaluate the utility and performance of quantile regression for providing more useful intervals of uncertainty in habitat relationships. These procedures were evaulated for conditions in which heterogeneity and hidden bias were induced by confounding with missing variables associated with other improtant processes, a problem common in statistical modeling of ecological phenomena. Simulations for a large (N = 10 000) finite population representing grid locations on a landscape demonstrated various forms of hidden bias that might occur when the effect of a measured habitat variable on some animal was confounded with the effect of another unmeasured variable. Quantile (0 ≤ τ ≤ 1) regression parameters for linear models that excluded the important, unmeasured variable revealed bias relative to parameters from the generating model. Depending on whether interactions of the measured and unmeasured variables were negative (interference interactions) or positive (facilitation interactions) in simulations without spatial structuring, either upper (τ > 0.5) or lower (τ < 0.5) quantile regression parameters were less biased than mean rate parameters. Heterogeneous, nonlinear response patterns occurred with correlations between the measured and unmeasured variables. When the unmeasured variable was spatially structured, variation in parameters across quantiles associated with heterogeneous effects of the habitat variable was reduced by modeling the spatial trend surface as a cubic polynomial of location coordinates, but substantial hidden bias remained. Sampling (n = 20-300) simulations demonstrated that regression quantile estimates and confidence intervals constructed by inverting weighted rank score tests provided valid coverage of these parameters. Local forms of quantile weighting were required for obtaining correct Type I error rates and confidence interval coverage. Quantile regression was used to estimate effects of physical habitat resources on a bivalve (Macomona liliana) in the spatially structured landscape on a sandflat in a New Zealand harbor. Confidence intervals around predicted 0.10 and 0.90 quantiles were used to estimate sampling intervals containing 80% of the variation in densities in relation to bed elevation. Spatially structured variation in bivalve counts estimated by a cubic polynomial trend surface remained after accounting for the nonlinear effects of bed elevation, indicating the existence of important spatially structured processes that were not adequately represented by the measured habitat variables.

Page Thumbnails

  • Thumbnail: Page 
786
    786
  • Thumbnail: Page 
787
    787
  • Thumbnail: Page 
788
    788
  • Thumbnail: Page 
789
    789
  • Thumbnail: Page 
790
    790
  • Thumbnail: Page 
791
    791
  • Thumbnail: Page 
792
    792
  • Thumbnail: Page 
793
    793
  • Thumbnail: Page 
794
    794
  • Thumbnail: Page 
795
    795
  • Thumbnail: Page 
796
    796
  • Thumbnail: Page 
797
    797
  • Thumbnail: Page 
798
    798
  • Thumbnail: Page 
799
    799
  • Thumbnail: Page 
800
    800