Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Are Invasive Species the Drivers or Passengers of Change in Degraded Ecosystems?

Andrew S. MacDougall and Roy Turkington
Ecology
Vol. 86, No. 1 (Jan., 2005), pp. 42-55
Published by: Wiley
Stable URL: http://www.jstor.org/stable/3450986
Page Count: 15
  • Download ($42.00)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Are Invasive Species the Drivers or Passengers of Change in Degraded Ecosystems?
Preview not available

Abstract

Few invaded ecosystems are free from habitat loss and disturbance, leading to uncertainty whether dominant invasive species are driving community change or are passengers along for the environmental ride. The "driver" model predicts that invaded communities are highly interactive, with subordinate native species being limited or excluded by competition from the exotic dominants. The "passenger" model predicts that invaded communities are primarily structured by noninteractive factors (environmental change, dispersal limitation) that are less constraining on the exotics, which thus dominate. We tested these alternative hypotheses in an invaded, fragmented, and fire-suppressed oak savanna. We examined the impact of two invasive dominant perennial grasses on community structure using a reduction (mowing of aboveground biomass) and removal (weeding of above-and belowground biomass) experiment conducted at different seasons and soil depths. We examined the relative importance of competition vs. dispersal limitation with experimental seed additions. Competition by the dominants limits the abundance and reproduction of many native and exotic species based on their increased performance with removals and mowing. The treatments resulted in increased light availability and bare soil; soil moisture and N were unaffected. Although competition was limiting for some, 36 of 79 species did not respond to the treatments or declined in the absence of grass cover. Seed additions revealed that some subordinates are dispersal limited; competition alone was insufficient to explain their rarity even though it does exacerbate dispersal inefficiencies by lowering reproduction. While the net effects of the dominants were negative, their presence restricted woody plants, facilitated seedling survival with moderate disturbance (i.e., treatments applied in the fall), or was not the primary limiting factor for the occurrence of some species. Finally, the species most functionally distinct from the dominants (forbs, woody plants) responded most significantly to the treatments. This suggests that relative abundance is determined more by trade-offs relating to environmental conditions (long-term fire suppression) than to traits relating to resource capture (which should most impact functionally similar species). This points toward the passenger model as the underlying cause of exotic dominance, although their combined effects (suppressive and facilitative) on community structure are substantial.

Page Thumbnails

  • Thumbnail: Page 
42
    42
  • Thumbnail: Page 
[unnumbered]
    [unnumbered]
  • Thumbnail: Page 
43
    43
  • Thumbnail: Page 
44
    44
  • Thumbnail: Page 
45
    45
  • Thumbnail: Page 
46
    46
  • Thumbnail: Page 
47
    47
  • Thumbnail: Page 
48
    48
  • Thumbnail: Page 
49
    49
  • Thumbnail: Page 
50
    50
  • Thumbnail: Page 
51
    51
  • Thumbnail: Page 
52
    52
  • Thumbnail: Page 
53
    53
  • Thumbnail: Page 
54
    54
  • Thumbnail: Page 
55
    55