Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

The Role of Nutrient Loading and Eutrophication in Estuarine Ecology

James L. Pinckney, Hans W. Paerl, Patricia Tester and Tammi L. Richardson
Environmental Health Perspectives
Vol. 109, Supplement 5: Pfiesteria: From Biology to Public Health (Oct., 2001), pp. 699-706
DOI: 10.2307/3454916
Stable URL: http://www.jstor.org/stable/3454916
Page Count: 8
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The Role of Nutrient Loading and Eutrophication in Estuarine Ecology
Preview not available

Abstract

Eutrophication is a process that can be defined as an increase in the rate of supply of organic matter (OM) to an ecosystem. We provide a general overview of the major features driving estuarine eutrophication and outline some of the consequences of that process. The main chemical constituent of OM is carbon (C), and therefore rates of eutrophication are expressed in units of C per area per unit time. OM occurs in both particulate and dissolved forms. Allochthonous OM originates outside the estuary, whereas autochthonous OM is generated within the system, mostly by primary producers or by benthic regeneration of OM. The supply rates of limiting nutrients regulate phytoplankton productivity that contributes to inputs of autochthonous OM. The trophic status of an estuary is often based on eutrophication rates and can be categorized as oligotrophic (<100 g C m-2 y-1), mesotrophic (100-300 g C m-2 y-1), eutrophic (300-500 g C m-2 y-1), or hypertrophic (>500 g C m-2 y-1). Ecosystem responses to eutrophication depend on both export rates (flushing, microbially mediated losses through respiration, and denitrification) and recycling/regeneration rates within the estuary. The mitigation of the effects of eutrophication involves the regulation of inorganic nutrient (primarily N and P) inputs into receiving waters. Appropriately scaled and parameterized nutrient and hydrologic controls are the only realistic options for controlling phytoplankton blooms, algal toxicity, and other symptoms of eutrophication in estuarine ecosystems.

Page Thumbnails

  • Thumbnail: Page 
699
    699
  • Thumbnail: Page 
700
    700
  • Thumbnail: Page 
701
    701
  • Thumbnail: Page 
702
    702
  • Thumbnail: Page 
703
    703
  • Thumbnail: Page 
704
    704
  • Thumbnail: Page 
705
    705
  • Thumbnail: Page 
706
    706