Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Effects of Air Pollutants on Acute Stroke Mortality

Yun-Chul Hong, Jong-Tae Lee, Ho Kim, Eun-Hee Ha, Joel Schwartz and David C. Christiani
Environmental Health Perspectives
Vol. 110, No. 2 (Feb., 2002), pp. 187-191
Stable URL: http://www.jstor.org/stable/3455378
Page Count: 5
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Effects of Air Pollutants on Acute Stroke Mortality
Preview not available

Abstract

The relationship between stroke and air pollution has not been adequately studied. We conducted a time-series study to examine the evidence of an association between air pollutants and stroke over 4 years (January 1995-December 1998) in Seoul, Korea. We used a generalized additive model to regress daily stroke death counts for each pollutant, controlling for seasonal and long-term trends and meteorologic influences, such as temperature, relative humidity, and barometric pressure. We observed an estimated increase of 1.5% [95% confidence interval (CI), 1.3-1.8%] and 2.9% (95% CI, 0.3-5.5%) in stroke mortality for each interquartile range increase in particulate matter < 10 μm aerodynamic diameter ( PM10) and ozone concentrations in the same day. Stroke mortality also increased 3.1% (95% CI, 1.1-5.1%) for nitrogen dioxide, 2.9% (95% CI, 0.8-5.0%) for sulfur dioxide, and 4.1% (95% CI, 1.1-7.2%) for carbon monoxide in a 2-day lag for each interquartile range increase in single-pollutant models. When we examined the associations among PM10 levels stratified by the level of gaseous pollutants and vice versa, we found that these pollutants are interactive with respect to their effects on the risk of stroke mortality. We also observed that the effects of PM10 on stroke mortality differ significantly in subgroups by age and sex. We conclude that PM10 and gaseous pollutants are significant risk factors for acute stroke death and that the elderly and women are more susceptible to the effect of particulate pollutants.

Page Thumbnails

  • Thumbnail: Page 
187
    187
  • Thumbnail: Page 
188
    188
  • Thumbnail: Page 
189
    189
  • Thumbnail: Page 
190
    190
  • Thumbnail: Page 
191
    191