Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Moment Inequalities for Functions of Independent Random Variables

Stéphane Boucheron, Olivier Bousquet, Gábor Lugosi and Pascal Massart
The Annals of Probability
Vol. 33, No. 2 (Mar., 2005), pp. 514-560
Stable URL: http://www.jstor.org/stable/3481746
Page Count: 47
  • Get Access
  • Read Online (Free)
  • Download ($19.00)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Moment Inequalities for Functions of Independent Random Variables
Preview not available

Abstract

A general method for obtaining moment inequalities for functions of independent random variables is presented. It is a generalization of the entropy method which has been used to derive concentration inequalities for such functions [Boucheron, Lugosi and Massart Ann. Probab. 31 (2003) 1583-1614], and is based on a generalized tensorization inequality due to Latała and Oleszkiewicz [Lecture Notes in Math. 1745 (2000) 147-168]. The new inequalities prove to be a versatile tool in a wide range of applications. We illustrate the power of the method by showing how it can be used to effortlessly re-derive classical inequalities including Rosenthal and Kahane-Khinchine-type inequalities for sums of independent random variables, moment inequalities for suprema of empirical processes and moment inequalities for Rademacher chaos and U-statistics. Some of these corollaries are apparently new. In particular, we generalize Talagrand's exponential inequality for Rademacher chaos of order 2 to any order. We also discuss applications for other complex functions of independent random variables, such as suprema of Boolean polynomials which include, as special cases, subgraph counting problems in random graphs.

Page Thumbnails

  • Thumbnail: Page 
514
    514
  • Thumbnail: Page 
515
    515
  • Thumbnail: Page 
516
    516
  • Thumbnail: Page 
517
    517
  • Thumbnail: Page 
518
    518
  • Thumbnail: Page 
519
    519
  • Thumbnail: Page 
520
    520
  • Thumbnail: Page 
521
    521
  • Thumbnail: Page 
522
    522
  • Thumbnail: Page 
523
    523
  • Thumbnail: Page 
524
    524
  • Thumbnail: Page 
525
    525
  • Thumbnail: Page 
526
    526
  • Thumbnail: Page 
527
    527
  • Thumbnail: Page 
528
    528
  • Thumbnail: Page 
529
    529
  • Thumbnail: Page 
530
    530
  • Thumbnail: Page 
531
    531
  • Thumbnail: Page 
532
    532
  • Thumbnail: Page 
533
    533
  • Thumbnail: Page 
534
    534
  • Thumbnail: Page 
535
    535
  • Thumbnail: Page 
536
    536
  • Thumbnail: Page 
537
    537
  • Thumbnail: Page 
538
    538
  • Thumbnail: Page 
539
    539
  • Thumbnail: Page 
540
    540
  • Thumbnail: Page 
541
    541
  • Thumbnail: Page 
542
    542
  • Thumbnail: Page 
543
    543
  • Thumbnail: Page 
544
    544
  • Thumbnail: Page 
545
    545
  • Thumbnail: Page 
546
    546
  • Thumbnail: Page 
547
    547
  • Thumbnail: Page 
548
    548
  • Thumbnail: Page 
549
    549
  • Thumbnail: Page 
550
    550
  • Thumbnail: Page 
551
    551
  • Thumbnail: Page 
552
    552
  • Thumbnail: Page 
553
    553
  • Thumbnail: Page 
554
    554
  • Thumbnail: Page 
555
    555
  • Thumbnail: Page 
556
    556
  • Thumbnail: Page 
557
    557
  • Thumbnail: Page 
558
    558
  • Thumbnail: Page 
559
    559
  • Thumbnail: Page 
560
    560