If you need an accessible version of this item please contact JSTOR User Support

The Particular-Universal Distinction: A Dogma of Metaphysics?

Fraser MacBride
Mind
New Series, Vol. 114, No. 455 (Jul., 2005), pp. 565-614
Published by: Oxford University Press on behalf of the Mind Association
Stable URL: http://www.jstor.org/stable/3489007
Page Count: 50
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
The Particular-Universal Distinction: A Dogma of Metaphysics?
Preview not available

Abstract

Is the assumption of a fundamental distinction between particulars and universals another unsupported dogma of metaphysics? F. P. Ramsey famously rejected the particular-universal distinction but neglected to consider the many different conceptions of the distinction that have been advanced. As a contribution to the (inevitably) piecemeal investigation of this issue three interrelated conceptions of the particular-universal distinction are examined: (i) universals, by contrast to particulars, are unigrade; (ii) particulars are related to universals by an asymmetric tie of exemplification; (iii) universals are incomplete whereas particulars are complete. It is argued that these conceptions are wanting in several respects. Sometimes they fail to mark a significant division amongst entities. Sometimes they make substantial demands upon the shape of reality; once these demands are understood aright it is no longer obvious that the distinction merits our acceptance. The case is made via a discussion of the possibility of multigrade universals.

Page Thumbnails

  • Thumbnail: Page 
[565]
    [565]
  • Thumbnail: Page 
566
    566
  • Thumbnail: Page 
567
    567
  • Thumbnail: Page 
568
    568
  • Thumbnail: Page 
569
    569
  • Thumbnail: Page 
570
    570
  • Thumbnail: Page 
571
    571
  • Thumbnail: Page 
572
    572
  • Thumbnail: Page 
573
    573
  • Thumbnail: Page 
574
    574
  • Thumbnail: Page 
575
    575
  • Thumbnail: Page 
576
    576
  • Thumbnail: Page 
577
    577
  • Thumbnail: Page 
578
    578
  • Thumbnail: Page 
579
    579
  • Thumbnail: Page 
580
    580
  • Thumbnail: Page 
581
    581
  • Thumbnail: Page 
582
    582
  • Thumbnail: Page 
583
    583
  • Thumbnail: Page 
584
    584
  • Thumbnail: Page 
585
    585
  • Thumbnail: Page 
586
    586
  • Thumbnail: Page 
587
    587
  • Thumbnail: Page 
588
    588
  • Thumbnail: Page 
589
    589
  • Thumbnail: Page 
590
    590
  • Thumbnail: Page 
591
    591
  • Thumbnail: Page 
592
    592
  • Thumbnail: Page 
593
    593
  • Thumbnail: Page 
594
    594
  • Thumbnail: Page 
595
    595
  • Thumbnail: Page 
596
    596
  • Thumbnail: Page 
597
    597
  • Thumbnail: Page 
598
    598
  • Thumbnail: Page 
599
    599
  • Thumbnail: Page 
600
    600
  • Thumbnail: Page 
601
    601
  • Thumbnail: Page 
602
    602
  • Thumbnail: Page 
603
    603
  • Thumbnail: Page 
604
    604
  • Thumbnail: Page 
605
    605
  • Thumbnail: Page 
606
    606
  • Thumbnail: Page 
607
    607
  • Thumbnail: Page 
608
    608
  • Thumbnail: Page 
609
    609
  • Thumbnail: Page 
610
    610
  • Thumbnail: Page 
611
    611
  • Thumbnail: Page 
612
    612
  • Thumbnail: Page 
613
    613
  • Thumbnail: Page 
614
    614