If you need an accessible version of this item please contact JSTOR User Support

Variance Components Structures for the Extreme-Value and Logistic Distributions with Application to Models of Heterogeneity

N. Scott Cardell
Econometric Theory
Vol. 13, No. 2 (Apr., 1997), pp. 185-213
Stable URL: http://www.jstor.org/stable/3532724
Page Count: 29
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Variance Components Structures for the Extreme-Value and Logistic Distributions with Application to Models of Heterogeneity
Preview not available

Abstract

Two new classes of probability distributions are introduced that radically simplify the process of developing variance components structures for extreme-value and logistic distributions. When one of these new variates is added to an extreme-value (logistic) variate, the resulting distribution is also extreme value (logistic). Thus, quite complicated variance structures can be generated by recursively adding components having this new distribution, and the result will retain a marginal extreme-value (logistic) distribution. It is demonstrated that the computational simplicity of extreme-value error structures extends to the introduction of heterogeneity in duration, selection bias, limited-dependent- and qualitative-variable models. The usefulness of these new classes of distributions is illustrated with the examples of nested logit, multivariate risk, and competing risk models, where important generalizations to conventional stochastic structures are developed. The new models are shown to be computationally simpler and far more tractable than alternatives such as estimation by simulated moments. These results will be of considerable use to applied microeconomic researchers who have been hampered by computational difficulties in constructing more sophisticated estimators.

Page Thumbnails

  • Thumbnail: Page 
185
    185
  • Thumbnail: Page 
186
    186
  • Thumbnail: Page 
187
    187
  • Thumbnail: Page 
188
    188
  • Thumbnail: Page 
189
    189
  • Thumbnail: Page 
190
    190
  • Thumbnail: Page 
191
    191
  • Thumbnail: Page 
192
    192
  • Thumbnail: Page 
193
    193
  • Thumbnail: Page 
194
    194
  • Thumbnail: Page 
195
    195
  • Thumbnail: Page 
196
    196
  • Thumbnail: Page 
197
    197
  • Thumbnail: Page 
198
    198
  • Thumbnail: Page 
199
    199
  • Thumbnail: Page 
200
    200
  • Thumbnail: Page 
201
    201
  • Thumbnail: Page 
202
    202
  • Thumbnail: Page 
203
    203
  • Thumbnail: Page 
204
    204
  • Thumbnail: Page 
205
    205
  • Thumbnail: Page 
206
    206
  • Thumbnail: Page 
207
    207
  • Thumbnail: Page 
208
    208
  • Thumbnail: Page 
209
    209
  • Thumbnail: Page 
210
    210
  • Thumbnail: Page 
211
    211
  • Thumbnail: Page 
212
    212
  • Thumbnail: Page 
213
    213