Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Bayesian Simultaneous Equations Analysis Using Reduced Rank Structures

Frank Kleibergen and Herman K. van Dijk
Econometric Theory
Vol. 14, No. 6 (Dec., 1998), pp. 701-743
Stable URL: http://www.jstor.org/stable/3533088
Page Count: 43
  • Read Online (Free)
  • Download ($49.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Bayesian Simultaneous Equations Analysis Using Reduced Rank Structures
Preview not available

Abstract

Diffuse priors lead to pathological posterior behavior when used in Bayesian analyses of simultaneous equation models (SEM's). This results from the local nonidentification of certain parameters in SEM's. When this a priori known feature is not captured appropriately, it results in an a posteriori favoring of certain specific parameter values that is not the consequence of strong data information but of local nonidentification. We show that a proper consistent Bayesian analysis of a SEM explicitly has to consider the reduced form of the SEM as a standard linear model on which nonlinear (reduced rank) restrictions are imposed, which result from a singular value decomposition. The priors/posteriors of the parameters of the SEM are therefore proportional to the priors/posteriors of the parameters of the linear model under the condition that the restrictions hold. This leads to a framework for constructing priors and posteriors for the parameters of SEM's. The framework is used to construct priors and posteriors for one, two, and three structural equation SEM's. These examples together with a theorem, showing that the reduced forms of SEM's accord with sets of reduced rank restrictions on standard linear models, show how Bayesian analyses of generally specified SEM's can be conducted.

Page Thumbnails

  • Thumbnail: Page 
701
    701
  • Thumbnail: Page 
702
    702
  • Thumbnail: Page 
703
    703
  • Thumbnail: Page 
704
    704
  • Thumbnail: Page 
705
    705
  • Thumbnail: Page 
706
    706
  • Thumbnail: Page 
707
    707
  • Thumbnail: Page 
708
    708
  • Thumbnail: Page 
709
    709
  • Thumbnail: Page 
710
    710
  • Thumbnail: Page 
711
    711
  • Thumbnail: Page 
712
    712
  • Thumbnail: Page 
713
    713
  • Thumbnail: Page 
714
    714
  • Thumbnail: Page 
715
    715
  • Thumbnail: Page 
716
    716
  • Thumbnail: Page 
717
    717
  • Thumbnail: Page 
718
    718
  • Thumbnail: Page 
719
    719
  • Thumbnail: Page 
720
    720
  • Thumbnail: Page 
721
    721
  • Thumbnail: Page 
722
    722
  • Thumbnail: Page 
723
    723
  • Thumbnail: Page 
724
    724
  • Thumbnail: Page 
725
    725
  • Thumbnail: Page 
726
    726
  • Thumbnail: Page 
727
    727
  • Thumbnail: Page 
728
    728
  • Thumbnail: Page 
729
    729
  • Thumbnail: Page 
730
    730
  • Thumbnail: Page 
731
    731
  • Thumbnail: Page 
732
    732
  • Thumbnail: Page 
733
    733
  • Thumbnail: Page 
734
    734
  • Thumbnail: Page 
735
    735
  • Thumbnail: Page 
736
    736
  • Thumbnail: Page 
737
    737
  • Thumbnail: Page 
738
    738
  • Thumbnail: Page 
739
    739
  • Thumbnail: Page 
740
    740
  • Thumbnail: Page 
741
    741
  • Thumbnail: Page 
742
    742
  • Thumbnail: Page 
743
    743