Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Tests of Common Stochastic Trends

Jukka Nyblom and Andrew Harvey
Econometric Theory
Vol. 16, No. 2 (Apr., 2000), pp. 176-199
Stable URL: http://www.jstor.org/stable/3533193
Page Count: 24
  • Read Online (Free)
  • Download ($49.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Tests of Common Stochastic Trends
Preview not available

Abstract

This paper is concerned with tests in multivariate time series models made up of random walk (with drift) and stationary components. When the stationary component is white noise, a Lagrange multiplier test of the hypothesis that the covariance matrix of the disturbances driving the multivariate random walk is null is shown to be locally best invariant, something that does not automatically follow in the multivariate case. The asymptotic distribution of the test statistic is derived for the general model. The test is then extended to deal with a serially correlated stationary component. The main contribution of the paper is to propose a test of the validity of a specified value for the rank of the covariance matrix of the disturbances driving the multivariate random walk. This rank is equal to the number of common trends, or levels, in the series. The test is very simple insofar as it does not require any models to be estimated, even if serial correlation is present. Its use with real data is illustrated in the context of a stochastic volatility model, and the relationship with tests in the cointegration literature is discussed.

Page Thumbnails

  • Thumbnail: Page 
176
    176
  • Thumbnail: Page 
177
    177
  • Thumbnail: Page 
178
    178
  • Thumbnail: Page 
179
    179
  • Thumbnail: Page 
180
    180
  • Thumbnail: Page 
181
    181
  • Thumbnail: Page 
182
    182
  • Thumbnail: Page 
183
    183
  • Thumbnail: Page 
184
    184
  • Thumbnail: Page 
185
    185
  • Thumbnail: Page 
186
    186
  • Thumbnail: Page 
187
    187
  • Thumbnail: Page 
188
    188
  • Thumbnail: Page 
189
    189
  • Thumbnail: Page 
190
    190
  • Thumbnail: Page 
191
    191
  • Thumbnail: Page 
192
    192
  • Thumbnail: Page 
193
    193
  • Thumbnail: Page 
194
    194
  • Thumbnail: Page 
195
    195
  • Thumbnail: Page 
196
    196
  • Thumbnail: Page 
197
    197
  • Thumbnail: Page 
198
    198
  • Thumbnail: Page 
199
    199