Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Efficient IV Estimation for Autoregressive Models with Conditional Heteroskedasticity

Guido M. Kuersteiner
Econometric Theory
Vol. 18, No. 3 (Jun., 2002), pp. 547-583
Stable URL: http://www.jstor.org/stable/3533640
Page Count: 37
  • Read Online (Free)
  • Download ($49.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Efficient IV Estimation for Autoregressive Models with Conditional Heteroskedasticity
Preview not available

Abstract

This paper analyzes autoregressive time series models where the errors are assumed to be martingale difference sequences that satisfy an additional symmetry condition on their fourth-order moments. Under these conditions quasi maximum likelihood estimators of the autoregressive parameters are no longer efficient in the generalized method of moments (GMM) sense. The main result of the paper is the construction of efficient semiparametric instrumental variables estimators for the autoregressive parameters. The optimal instruments are linear functions of the innovation sequence. It is shown that a frequency domain approximation of the optimal instruments leads to an estimator that only depends on the data periodogram and an unknown linear filter. Semiparametric methods to estimate the optimal filter are proposed. The procedure is equivalent to GMM estimators where lagged observations are used as instruments. As a result of the additional symmetry assumption on the fourth moments the number of instruments is allowed to grow at the same rate as the sample. No lag truncation parameters are needed to implement the estimator, which makes it particularly appealing from an applied point of view.

Page Thumbnails

  • Thumbnail: Page 
547
    547
  • Thumbnail: Page 
548
    548
  • Thumbnail: Page 
549
    549
  • Thumbnail: Page 
550
    550
  • Thumbnail: Page 
551
    551
  • Thumbnail: Page 
552
    552
  • Thumbnail: Page 
553
    553
  • Thumbnail: Page 
554
    554
  • Thumbnail: Page 
555
    555
  • Thumbnail: Page 
556
    556
  • Thumbnail: Page 
557
    557
  • Thumbnail: Page 
558
    558
  • Thumbnail: Page 
559
    559
  • Thumbnail: Page 
560
    560
  • Thumbnail: Page 
561
    561
  • Thumbnail: Page 
562
    562
  • Thumbnail: Page 
563
    563
  • Thumbnail: Page 
564
    564
  • Thumbnail: Page 
565
    565
  • Thumbnail: Page 
566
    566
  • Thumbnail: Page 
567
    567
  • Thumbnail: Page 
568
    568
  • Thumbnail: Page 
569
    569
  • Thumbnail: Page 
570
    570
  • Thumbnail: Page 
571
    571
  • Thumbnail: Page 
572
    572
  • Thumbnail: Page 
573
    573
  • Thumbnail: Page 
574
    574
  • Thumbnail: Page 
575
    575
  • Thumbnail: Page 
576
    576
  • Thumbnail: Page 
577
    577
  • Thumbnail: Page 
578
    578
  • Thumbnail: Page 
579
    579
  • Thumbnail: Page 
580
    580
  • Thumbnail: Page 
581
    581
  • Thumbnail: Page 
582
    582
  • Thumbnail: Page 
583
    583