If you need an accessible version of this item please contact JSTOR User Support

Assembly Rules for Functional Groups in North American Desert Rodent Communities

Barry J. Fox and James H. Brown
Oikos
Vol. 67, No. 2 (Jun., 1993), pp. 358-370
Published by: Wiley on behalf of Nordic Society Oikos
DOI: 10.2307/3545483
Stable URL: http://www.jstor.org/stable/3545483
Page Count: 13
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Assembly Rules for Functional Groups in North American Desert Rodent Communities
Preview not available

Abstract

We examine the operation of an assembly rule to account for the structure of rodent communities in the species-rich southwestern deserts of North America. The rule specifies the functional group from which the species should come, rather than the identity of individual species in the assemblage; it specifies that each species entering a community will tend to be drawn from a different group until each group is represented, and then the rule repeats. Here we tested for operation of the rule using three data sets: 1) for 115 sites from a small region of Nevada we analyzed 11 species of granivorous rodents distributed among three functional groups with different foraging strategies: bipedal heteromyids, quadrupedal heteromyids, and quadrupedal non-heteromyids; 2) for the same sites, we added folivores and insectivores to the three functional groups of granivores to analyze all 14 species of rodents present; and 3) for 202 sites dispersed across the southwestern U.S. we analyzed 28 species of granivores distributed among three functional groups: bipedal heteromyids, quadrupedal heteromyids, and cricetids. We used 1000 Monte Carlo simulations of random community assembly to produce frequency distributions for the expectations of the null hypothesis to test if observed communities followed the rule overall. Then we compared observed frequencies of particular combinations of functional groups with those expected by chance. We demonstrate that the rule applies to different functional groupings of desert rodents, and to assemblages at different spatial scales. We show that the neutral model used in the simulations is robust and appropriate. We suggest that the mechanism underlying this rule is interspecific competition, which operates by affecting the probability that species in different functional groups differ sufficiently in resource utilization so as to be able to coexist. Our results demonstrate the usefulness of an approach that incorporates both deterministic and stochastic processes of community assembly.

Page Thumbnails

  • Thumbnail: Page 
358
    358
  • Thumbnail: Page 
359
    359
  • Thumbnail: Page 
360
    360
  • Thumbnail: Page 
361
    361
  • Thumbnail: Page 
362
    362
  • Thumbnail: Page 
363
    363
  • Thumbnail: Page 
364
    364
  • Thumbnail: Page 
365
    365
  • Thumbnail: Page 
366
    366
  • Thumbnail: Page 
367
    367
  • Thumbnail: Page 
368
    368
  • Thumbnail: Page 
369
    369
  • Thumbnail: Page 
370
    370