Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Plant Responses to Species Removal and Experimental Warming in Alaskan Tussock Tundra

Sarah E. Hobbie, Anna Shevtsova and F. Stuart Chapin, III
Oikos
Vol. 84, No. 3 (Mar., 1999), pp. 417-434
Published by: Wiley on behalf of Nordic Society Oikos
DOI: 10.2307/3546421
Stable URL: http://www.jstor.org/stable/3546421
Page Count: 18
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Plant Responses to Species Removal and Experimental Warming in Alaskan Tussock Tundra
Preview not available

Abstract

We manipulated air temperature and the presence of the seven dominant plant species in Alaskan tussock tundra and measured shoot growth, branching, aboveground biomass, and reproduction of the remaining plant species. Warming stimulated shoot growth of the dominant sedges and shrubs after one and two years of manipulation and total leaf biomass of the dominant shrubs after three years. Warming decreased aboveground biomass of Eriophorum vaginatum, Cassiope tetragona and most non-vascular species. Warming also reduced total reproductive output of two of three species measured. Removal of single species had no effect on shoot growth of the remaining species. However, total aboveground biomass and reproduction of Ledum palustre increased with removal of other shrub species, suggesting that competition limits biomass accumulation in L. palustre. Sphagnum removal increased the aboveground biomass of Betula nana. The higher frequency of significant warming versus species removal effects on plant growth and biomass suggests that direct limitation by environmental conditions is more important than limitation by species interactions in tussock tundra. Furthermore, we found no significant interactions between warming and species removal, suggesting that increased temperature per se will not alter the intensity of species interactions. When combined with knowledge of dispersal abilities and controls over establishment, extrapolation of species responses to environmental manipulation may thus allow us to predict effects of climate change on community composition.

Page Thumbnails

  • Thumbnail: Page 
417
    417
  • Thumbnail: Page 
418
    418
  • Thumbnail: Page 
419
    419
  • Thumbnail: Page 
420
    420
  • Thumbnail: Page 
421
    421
  • Thumbnail: Page 
422
    422
  • Thumbnail: Page 
423
    423
  • Thumbnail: Page 
424
    424
  • Thumbnail: Page 
425
    425
  • Thumbnail: Page 
426
    426
  • Thumbnail: Page 
427
    427
  • Thumbnail: Page 
428
    428
  • Thumbnail: Page 
429
    429
  • Thumbnail: Page 
430
    430
  • Thumbnail: Page 
431
    431
  • Thumbnail: Page 
432
    432
  • Thumbnail: Page 
433
    433
  • Thumbnail: Page 
434
    434