Access

You are not currently logged in.

Access JSTOR through your library or other institution:

login

Log in through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Journal Article

A Protein Competition Model of Phenolic Allocation

Clive G. Jones and Susan E. Hartley
Oikos
Vol. 86, No. 1 (Jul., 1999), pp. 27-44
Published by: Wiley on behalf of Nordic Society Oikos
DOI: 10.2307/3546567
Stable URL: http://www.jstor.org/stable/3546567
Page Count: 18
Were these topics helpful?
See something inaccurate? Let us know!

Select the topics that are inaccurate.

Cancel
  • Read Online (Free)
  • Subscribe ($19.50)
  • Add to My Lists
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
A Protein Competition Model of Phenolic Allocation
Preview not available

Abstract

We present a Protein Competition Model (PCM) for predicting total phenolic allocation and concentration in leaves of terrestrial higher plants. In contrast to predictions based on the carbon composition of end products, the PCM is based on metabolic origins of pathway constituents, alternative fates of pathway precursors, and biochemical regulatory mechanisms. Protein and phenolic synthesis compete for the common, limiting resource phenylalanine, so protein and phenolic allocation are inversely correlated. Phenolic allocation can be predicted from the effects of development, inherent growth rate and environment on leaf functions that create competing demands for proteins or phenolics. We present the model general principles. We predict phenolic concentrations as leaves develop; in inherently fast versus slow growing species; and in response to the environment (nitrogen, light, phosphorus, heat shock, herbivore and pathogen injury, and carbon dioxide). Because predictions generally fit observed patterns, we argue that, for phenylalanine-derived phenolics, the mechanistically distinctive PCM complements the Growth Differentiation and Resource Availability Hypotheses, and is a viable, testable alternative to the Carbon Nutrient Balance Hypothesis.

Page Thumbnails

  • Thumbnail: Page 
27
    27
  • Thumbnail: Page 
28
    28
  • Thumbnail: Page 
29
    29
  • Thumbnail: Page 
30
    30
  • Thumbnail: Page 
31
    31
  • Thumbnail: Page 
32
    32
  • Thumbnail: Page 
33
    33
  • Thumbnail: Page 
34
    34
  • Thumbnail: Page 
35
    35
  • Thumbnail: Page 
36
    36
  • Thumbnail: Page 
37
    37
  • Thumbnail: Page 
38
    38
  • Thumbnail: Page 
39
    39
  • Thumbnail: Page 
40
    40
  • Thumbnail: Page 
41
    41
  • Thumbnail: Page 
42
    42
  • Thumbnail: Page 
43
    43
  • Thumbnail: Page 
44
    44