Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Estimation by Capture-Recapture of Recruitment and Dispersal over Several Sites

J. D. Lebreton, J. E. Hines, R. Pradel, J. D. Nichols and J. A. Spendelow
Oikos
Vol. 101, No. 2 (May, 2003), pp. 253-264
Published by: Wiley on behalf of Nordic Society Oikos
Stable URL: http://www.jstor.org/stable/3547976
Page Count: 12
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Estimation by Capture-Recapture of Recruitment and Dispersal over Several Sites
Preview not available

Abstract

Dispersal in animal populations is intimately linked with accession to reproduction, i.e. recruitment, and population regulation. Dispersal processes are thus a key component of population dynamics to the same extent as reproduction or mortality processes. Despite the growing interest in spatial aspects of population dynamics, the methodology for estimating dispersal, in particular in relation with recruitment, is limited. In many animal populations, in particular vertebrates, the impossibility of following individuals over space and time in an exhaustive way leads to the need to frame the estimation of dispersal in the context of capture-recapture methodology. We present here a class of age-dependent multistate capture-recapture models for the simultaneous estimation of natal dispersal, breeding dispersal, and age-dependent recruitment. These models are suitable for populations in which individuals are marked at birth and then recaptured over several sites. Under simple constraints, they can be used in populations where non-breeders are not observed, as is often the case with colonial waterbirds monitored on their breeding grounds. Biological questions can be addressed by comparing models differing in structure, according to the generalized linear model philosophy broadly used in capture-recapture methodology. We illustrate the potential of this approach by an analysis of recruitment and dispersal in the roseate tern Sterna dougallii.

Page Thumbnails

  • Thumbnail: Page 
253
    253
  • Thumbnail: Page 
254
    254
  • Thumbnail: Page 
255
    255
  • Thumbnail: Page 
256
    256
  • Thumbnail: Page 
257
    257
  • Thumbnail: Page 
258
    258
  • Thumbnail: Page 
259
    259
  • Thumbnail: Page 
260
    260
  • Thumbnail: Page 
261
    261
  • Thumbnail: Page 
262
    262
  • Thumbnail: Page 
263
    263
  • Thumbnail: Page 
264
    264