Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

The Frequency Spectrum of Structured Discrete Time Population Models: Its Properties and Their Ecological Implications

J. V. Greenman and T. G. Benton
Oikos
Vol. 110, No. 2 (Aug., 2005), pp. 369-389
Published by: Wiley on behalf of Nordic Society Oikos
Stable URL: http://www.jstor.org/stable/3548478
Page Count: 21
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The Frequency Spectrum of Structured Discrete Time Population Models: Its Properties and Their Ecological Implications
Preview not available

Abstract

Much research effort has been devoted to the study of the interaction between environmental noise and discrete time nonlinear dynamical systems. A large part of this effort has involved numerical simulation of simple unstructured models for particular ranges of parameter values. While such research is important in encouraging discussion of important ecological issues it is often unclear how general are the conclusions reached. However, by restricting attention to weak noise it is possible to obtain analytical results that hold for essentially all discrete time models and still provide considerable insight into the properties of the noise-dynamics interface. We follow this approach, focusing on the autocorrelation properties of the population fluctuations using the power (frequency) spectrum matrix as the analytic framework. We study the relationship between the spectral peak structure and the dynamical behaviour of the system and the modulation of this relationship by its internal structure, acting as an "intrinsic" filter and by colour in the noise acting as an "extrinsic" filter. These filters redistribute "power" between frequency components in the spectrum. The analysis emphasises the importance of eigenvalues in the identification of resonance, both in the system itself and in its subsystems, and the importance of noise configuration in defining which paths are followed on the network. The analysis highlights the complexity of the inverse problem (in finding, for example, the source of long term fluctuations) and the role of factors other than colour in the persistence of populations.

Page Thumbnails

  • Thumbnail: Page 
369
    369
  • Thumbnail: Page 
370
    370
  • Thumbnail: Page 
371
    371
  • Thumbnail: Page 
372
    372
  • Thumbnail: Page 
373
    373
  • Thumbnail: Page 
374
    374
  • Thumbnail: Page 
375
    375
  • Thumbnail: Page 
376
    376
  • Thumbnail: Page 
377
    377
  • Thumbnail: Page 
378
    378
  • Thumbnail: Page 
379
    379
  • Thumbnail: Page 
380
    380
  • Thumbnail: Page 
381
    381
  • Thumbnail: Page 
382
    382
  • Thumbnail: Page 
383
    383
  • Thumbnail: Page 
384
    384
  • Thumbnail: Page 
385
    385
  • Thumbnail: Page 
386
    386
  • Thumbnail: Page 
387
    387
  • Thumbnail: Page 
388
    388
  • Thumbnail: Page 
389
    389