Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

Granule-Bound Starch Synthase (GBSSI) Gene Phylogeny of Wild Tomatoes (Solanum L. Section Lycopersicon [Mill.] Wettst. Subsection Lycopersicon)

Iris E. Peralta and David M. Spooner
American Journal of Botany
Vol. 88, No. 10 (Oct., 2001), pp. 1888-1902
Stable URL: http://www.jstor.org/stable/3558365
Page Count: 15
  • Read Online (Free)
  • Download ($12.00)
  • Subscribe ($19.50)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
Granule-Bound Starch Synthase (GBSSI) Gene Phylogeny of Wild Tomatoes (Solanum L. Section Lycopersicon [Mill.] Wettst. Subsection Lycopersicon)
Preview not available

Abstract

Eight wild tomato species are native to western South America and one to the Galapagos Islands. Different classifications of tomatoes have been based on morphological or biological criteria. Our primary goal was to examine the phylogenetic relationships of all nine wild tomato species and closely related outgroups, with a concentration on the most widespread and variable tomato species Solarium peruvianum, using DNA sequences of the structural gene granule-bound starch synthase (GBSSI, or waxy). Results show some concordance with previous morphology-based classifications and new relationships. The ingroup comprised a basal polytomy composed of the self-incompatible green-fruited species S. chilense and the central to southern Peruvian populations of S. peruvianum, S. habrochaites, and S. pennellii. A derived clade contains the northern Peruvian populations of S. peruvianum (also self-incompatible, green-fruited), S. chmielewskii, and S. neorickii (self-compatible, green-fruited), and the self-compatible and red- to orange- to yellow-fruited species S. cheesmaniae, S. lycopersicum, and S. pimpinellifolium. Outgroup relationships are largely concordant with prior chloroplast DNA restriction site phylogenies, support S. juglandifolium and S. ochranthum as the closest outgroup to tomatoes with S. lycopersicoides and S. sitiens as basal to these, and support allogamy, self-incompatibility, and green fruits as primitive in the tomato clade.

Page Thumbnails

  • Thumbnail: Page 
1888
    1888
  • Thumbnail: Page 
1889
    1889
  • Thumbnail: Page 
1890
    1890
  • Thumbnail: Page 
1891
    1891
  • Thumbnail: Page 
1892
    1892
  • Thumbnail: Page 
1893
    1893
  • Thumbnail: Page 
1894
    1894
  • Thumbnail: Page 
1895
    1895
  • Thumbnail: Page 
1896
    1896
  • Thumbnail: Page 
1897
    1897
  • Thumbnail: Page 
1898
    1898
  • Thumbnail: Page 
1899
    1899
  • Thumbnail: Page 
1900
    1900
  • Thumbnail: Page 
1901
    1901
  • Thumbnail: Page 
1902
    1902