Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Rice and Phragmites: Effects of Organic Acids on Growth, Root Permeability, and Radial Oxygen Loss to the Rhizosphere

Jean Armstrong and William Armstrong
American Journal of Botany
Vol. 88, No. 8 (Aug., 2001), pp. 1359-1370
Stable URL: http://www.jstor.org/stable/3558443
Page Count: 12
  • Read Online (Free)
  • Download ($12.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Rice and Phragmites: Effects of Organic Acids on Growth, Root Permeability, and Radial Oxygen Loss to the Rhizosphere
Preview not available

Abstract

Young Phragmites plants were grown in two cocktails of monocarboxylic acids (C1-C5) at pH 6, where the concentration of each acid was innocuous and the total undissociated (potentially toxic) concentrations were 0.35 mmol/L and 0.42 mmol/L. Rice plants were subjected to 1.5 mmol/L acetic acid at pH 4.5 (undissociated concentration = 1.05 mmol/L). In Phragmites, each cocktail curtailed root growth especially and induced premature shoot senescence. In both species, after 3-5 d of treatment, radial oxygen loss (ROL) from apical regions of adventitious roots, and from Phragmites laterals, was reduced to very low values and associated with cell wall lignification and suberization in the surface cell layers. At later stages of treatment, rice responded to acetic acid in similar ways to Phragmites, with the development of intercellular and callus type occlusions in the gas space system, vascular blockages, and the failure of laterals to emerge. The results are relevant to the supply of oxygen from Phragmites roots to sediments for the phytopurification of waste waters, to the efflux of methane and carbon dioxide from wetlands, and to rice cultivation.

Page Thumbnails

  • Thumbnail: Page 
1359
    1359
  • Thumbnail: Page 
1360
    1360
  • Thumbnail: Page 
1361
    1361
  • Thumbnail: Page 
1362
    1362
  • Thumbnail: Page 
1363
    1363
  • Thumbnail: Page 
1364
    1364
  • Thumbnail: Page 
1365
    1365
  • Thumbnail: Page 
1366
    1366
  • Thumbnail: Page 
1367
    1367
  • Thumbnail: Page 
1368
    1368
  • Thumbnail: Page 
1369
    1369
  • Thumbnail: Page 
1370
    1370