Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

The Phenomenology of Niche Evolution via Quantitative Traits in a 'Black-Hole' Sink

R. D. Holt, R. Gomulkiewicz and M. Barfield
Proceedings: Biological Sciences
Vol. 270, No. 1511 (Jan. 22, 2003), pp. 215-224
Published by: Royal Society
Stable URL: http://www.jstor.org/stable/3558765
Page Count: 10
  • Read Online (Free)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The Phenomenology of Niche Evolution via Quantitative Traits in a 'Black-Hole' Sink
Preview not available

Abstract

Previous studies of adaptive evolution in sink habitats (in which isolated populations of a species cannot persist deterministically) have highlighted the importance of demographic constraints in slowing such evolution, and of immigration in facilitating adaptation. These studies have relied upon either single-locus models or deterministic quantitative genetic formulations. We use individual-based simulations to examine adaptive evolution in a 'black-hole' sink environment where fitness is governed by a polygenic character. The simulations track both the number of individuals and their multi-locus genotypes, and incorporate, in a natural manner, both demographic and genetic stochastic processes. In agreement with previous studies, our findings reveal the central parts played by demographic constraints and immigration in adaptation within a sink (adaptation is more difficult in environments with low absolute fitness, and higher immigration can accelerate adaptation). A novel finding is that there is a 'punctuational' pattern in adaptive evolution in sink environments. Populations typically stay maladapted for a long time, and then rapidly shift into a relatively adapted state, in which persistence no longer depends upon recurrent immigration.

Page Thumbnails

  • Thumbnail: Page 
215
    215
  • Thumbnail: Page 
216
    216
  • Thumbnail: Page 
217
    217
  • Thumbnail: Page 
218
    218
  • Thumbnail: Page 
219
    219
  • Thumbnail: Page 
220
    220
  • Thumbnail: Page 
221
    221
  • Thumbnail: Page 
222
    222
  • Thumbnail: Page 
223
    223
  • Thumbnail: Page 
224
    224