Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Ecological Inference for 2 x 2 Tables

Jon Wakefield
Journal of the Royal Statistical Society. Series A (Statistics in Society)
Vol. 167, No. 3 (2004), pp. 385-445
Published by: Wiley for the Royal Statistical Society
Stable URL: http://www.jstor.org/stable/3559772
Page Count: 61
  • Read Online (Free)
  • Download ($29.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Ecological Inference for 2 x 2 Tables
Preview not available

Abstract

A fundamental problem in many disciplines, including political science, sociology and epidemiology, is the examination of the association between two binary variables across a series of 2 x 2 tables, when only the margins are observed, and one of the margins is fixed. Two unobserved fractions are of interest, with only a single response per table, and it is this non-identifiability that is the inherent difficulty lying at the heart of ecological inference. Many methods have been suggested for ecological inference, often without a probabilistic model; we clarify the form of the sampling distribution and critique previous approaches within a formal statistical framework, thus allowing clarification and examination of the assumptions that are required under all approaches. A particularly difficult problem is choosing between models with and without contextual effects. Various Bayesian hierarchical modelling approaches are proposed to allow the formal inclusion of supplementary data, and/or prior information, without which ecological inference is unreliable. Careful choice of the prior within such models is required, however, since there may be considerable sensitivity to this choice, even when the model assumed is correct and there are no contextual effects. This sensitivity is shown to be a function of the number of areas and the distribution of the proportions in the fixed margin across areas. By explicitly providing a likelihood for each table, the combination of individual level survey data and aggregate level data is straightforward and we illustrate that survey data can be highly informative, particularly if these data are from a survey of the minority population within each area. This strategy is related to designs that are used in survey sampling and in epidemiology. An approximation to the suggested likelihood is discussed, and various computational approaches are described. Some extensions are outlined including the consideration of multiway tables, spatial dependence and area-specific (contextual) variables. Voter registration-race data from 64 counties in the US state of Louisiana are used to illustrate the methods.

Page Thumbnails

  • Thumbnail: Page 
[385]
    [385]
  • Thumbnail: Page 
386
    386
  • Thumbnail: Page 
387
    387
  • Thumbnail: Page 
388
    388
  • Thumbnail: Page 
389
    389
  • Thumbnail: Page 
390
    390
  • Thumbnail: Page 
391
    391
  • Thumbnail: Page 
392
    392
  • Thumbnail: Page 
393
    393
  • Thumbnail: Page 
394
    394
  • Thumbnail: Page 
395
    395
  • Thumbnail: Page 
396
    396
  • Thumbnail: Page 
397
    397
  • Thumbnail: Page 
398
    398
  • Thumbnail: Page 
399
    399
  • Thumbnail: Page 
400
    400
  • Thumbnail: Page 
401
    401
  • Thumbnail: Page 
402
    402
  • Thumbnail: Page 
403
    403
  • Thumbnail: Page 
404
    404
  • Thumbnail: Page 
405
    405
  • Thumbnail: Page 
406
    406
  • Thumbnail: Page 
407
    407
  • Thumbnail: Page 
408
    408
  • Thumbnail: Page 
409
    409
  • Thumbnail: Page 
410
    410
  • Thumbnail: Page 
411
    411
  • Thumbnail: Page 
412
    412
  • Thumbnail: Page 
413
    413
  • Thumbnail: Page 
414
    414
  • Thumbnail: Page 
415
    415
  • Thumbnail: Page 
416
    416
  • Thumbnail: Page 
417
    417
  • Thumbnail: Page 
418
    418
  • Thumbnail: Page 
419
    419
  • Thumbnail: Page 
420
    420
  • Thumbnail: Page 
421
    421
  • Thumbnail: Page 
422
    422
  • Thumbnail: Page 
423
    423
  • Thumbnail: Page 
424
    424
  • Thumbnail: Page 
425
    425
  • Thumbnail: Page 
426
    426
  • Thumbnail: Page 
427
    427
  • Thumbnail: Page 
428
    428
  • Thumbnail: Page 
429
    429
  • Thumbnail: Page 
430
    430
  • Thumbnail: Page 
431
    431
  • Thumbnail: Page 
432
    432
  • Thumbnail: Page 
433
    433
  • Thumbnail: Page 
434
    434
  • Thumbnail: Page 
435
    435
  • Thumbnail: Page 
436
    436
  • Thumbnail: Page 
437
    437
  • Thumbnail: Page 
438
    438
  • Thumbnail: Page 
439
    439
  • Thumbnail: Page 
440
    440
  • Thumbnail: Page 
441
    441
  • Thumbnail: Page 
442
    442
  • Thumbnail: Page 
443
    443
  • Thumbnail: Page 
444
    444
  • Thumbnail: Page 
445
    445