Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Oblique Propagation of Electromagnetic and Elastic Waves for an Array of Cylindrical Fibres

S. Guenneau, C. G. Poulton and A. B. Movchan
Proceedings: Mathematical, Physical and Engineering Sciences
Vol. 459, No. 2037 (Sep. 8, 2003), pp. 2215-2263
Published by: Royal Society
Stable URL: http://www.jstor.org/stable/3560156
Page Count: 49
  • Read Online (Free)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Oblique Propagation of Electromagnetic and Elastic Waves for an Array of Cylindrical Fibres
Preview not available

Abstract

This paper presents analysis of electromagnetic and elastodynamic waves propagating through a doubly periodic array of cylindrical channels in oblique incidence. A new method, based on a multipole scattering approach, has been proposed to reduce these spectral problems for partial differential equations to certain algebraic problems of the Rayleigh type. We obtain a formulation in terms of an eigenvalue problem that enables us to construct the high-order dispersion curves and to study both photonic and phononic band-gap structures in oblique incidence. We also address the question of a singular perturbation induced by the conical incidence and discuss some effective properties for ferromagnetic photonic crystal fibres in the long-wavelength limit.

Page Thumbnails

  • Thumbnail: Page 
2215
    2215
  • Thumbnail: Page 
2216
    2216
  • Thumbnail: Page 
2217
    2217
  • Thumbnail: Page 
2218
    2218
  • Thumbnail: Page 
2219
    2219
  • Thumbnail: Page 
2220
    2220
  • Thumbnail: Page 
2221
    2221
  • Thumbnail: Page 
2222
    2222
  • Thumbnail: Page 
2223
    2223
  • Thumbnail: Page 
2224
    2224
  • Thumbnail: Page 
2225
    2225
  • Thumbnail: Page 
2226
    2226
  • Thumbnail: Page 
2227
    2227
  • Thumbnail: Page 
2228
    2228
  • Thumbnail: Page 
2229
    2229
  • Thumbnail: Page 
2230
    2230
  • Thumbnail: Page 
2231
    2231
  • Thumbnail: Page 
2232
    2232
  • Thumbnail: Page 
2233
    2233
  • Thumbnail: Page 
2234
    2234
  • Thumbnail: Page 
2235
    2235
  • Thumbnail: Page 
2236
    2236
  • Thumbnail: Page 
2237
    2237
  • Thumbnail: Page 
2238
    2238
  • Thumbnail: Page 
2239
    2239
  • Thumbnail: Page 
2240
    2240
  • Thumbnail: Page 
2241
    2241
  • Thumbnail: Page 
2242
    2242
  • Thumbnail: Page 
2243
    2243
  • Thumbnail: Page 
2244
    2244
  • Thumbnail: Page 
2245
    2245
  • Thumbnail: Page 
2246
    2246
  • Thumbnail: Page 
2247
    2247
  • Thumbnail: Page 
2248
    2248
  • Thumbnail: Page 
2249
    2249
  • Thumbnail: Page 
2250
    2250
  • Thumbnail: Page 
2251
    2251
  • Thumbnail: Page 
2252
    2252
  • Thumbnail: Page 
2253
    2253
  • Thumbnail: Page 
2254
    2254
  • Thumbnail: Page 
2255
    2255
  • Thumbnail: Page 
2256
    2256
  • Thumbnail: Page 
2257
    2257
  • Thumbnail: Page 
2258
    2258
  • Thumbnail: Page 
2259
    2259
  • Thumbnail: Page 
2260
    2260
  • Thumbnail: Page 
2261
    2261
  • Thumbnail: Page 
2262
    2262
  • Thumbnail: Page 
2263
    2263