Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

X-Ray-Induced Single-Strand Breaks in DNA of E. coli B / r: Effect of Irradiation and Postirradiation Conditions

Shirley Lehnert and Harold Moroson
Radiation Research
Vol. 45, No. 2 (Feb., 1971), pp. 299-310
DOI: 10.2307/3573123
Stable URL: http://www.jstor.org/stable/3573123
Page Count: 12
  • Read Online (Free)
  • Download ($10.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
X-Ray-Induced Single-Strand Breaks in DNA of E. coli B / r: Effect of Irradiation and Postirradiation Conditions
Preview not available

Abstract

Alkaline sucrose-density gradient results indicate that aerobic irradiation of log phase E. coli B/r CSH is 4.5 times more effective than anoxic irradiation in producing single-strand breaks in DNA. If 0.02 M EDTA, presumed to inhibit the rejoining enzyme, is present during irradiation, the yield of breaks is increased 6-fold in air and 10-fold in nitrogen, thus aerobic conditions are still more effective than anoxic in producing breaks. Holding bacteria at 0°C in buffer after aerobic or anoxic radiation resulted in 80-90% of the observed breaks being rejoined. Since rejoining takes place during irradiation, the yield of breaks is dose-rate dependent. The oxygen effect on single-strand breaks in log phase E. coli B/r may be related to radiation survival: however, survival is not improved by lowering the dose rate nor by postirradiation holding at 0°C conditions which result in the rejoining of breaks. Holding irradiated bacteria in buffer at 37°C results in only a small amount of rejoining, while considerable loss of label takes place due to DNA degradation. Holding at 37°C in growth medium, however, results in DNA degradation accompanied by a marked increase in molecular weight of TCA-insoluble DNA.

Page Thumbnails

  • Thumbnail: Page 
299
    299
  • Thumbnail: Page 
300
    300
  • Thumbnail: Page 
301
    301
  • Thumbnail: Page 
302
    302
  • Thumbnail: Page 
303
    303
  • Thumbnail: Page 
304
    304
  • Thumbnail: Page 
305
    305
  • Thumbnail: Page 
306
    306
  • Thumbnail: Page 
307
    307
  • Thumbnail: Page 
308
    308
  • Thumbnail: Page 
309
    309
  • Thumbnail: Page 
310
    310