Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

The Effect of pH on Potentially Lethal Damage Recovery in A549 Cells

Marie E. Varnes, Lyle A. Dethlefsen and John E. Biaglow
Radiation Research
Vol. 108, No. 1 (Oct., 1986), pp. 80-90
DOI: 10.2307/3576972
Stable URL: http://www.jstor.org/stable/3576972
Page Count: 11
  • Read Online (Free)
  • Download ($10.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The Effect of pH on Potentially Lethal Damage Recovery in A549 Cells
Preview not available

Abstract

The radiation sensitivity and potentially lethal damage recovery (PLDR) capacity of A549 human lung carcinoma cells have been studied. For unfed monolayer cultures, radiation sensitivity was greater in plateau phase than in log phase of growth. PLDR was observed when plateau-phase cells were held in their own spent medium postirradiation, such that the dose-response curve with 24 h holding was similar to that for log-phase cells plated immediately after irradiation. The high PLDR capacity of A549 plateau-phase cells (recovery factor between 40 and 70 for 24 h holding after 10 Gy) was reduced 10-fold or more by alkalinizing the pH of the spent medium immediately after irradiation from a value of 6.5 ± 0.1 to a value of 7.6. Medium alkalinization resulted in an increase in the rate of glycolysis, with subsequent reacidification to a pH of 7.3 within 2 h of the pH adjustment. No change in cell cycle distribution was observed in the plateau-phase cultures up to 32 h after change of medium pH, and no increase in cell density was found after 48 h. A slight increase in the rate of incorporation of radiolabeled thymidine into acid-precipitable material was observed at 4 and 24 h after alkalinization of the medium. While it is not possible at present to define a mechanism for this pH effect, our results demonstrate that, at least for this cell line, variables such as medium pH and glucose concentration can profoundly influence the observation of PLDR.

Page Thumbnails

  • Thumbnail: Page 
80
    80
  • Thumbnail: Page 
81
    81
  • Thumbnail: Page 
82
    82
  • Thumbnail: Page 
83
    83
  • Thumbnail: Page 
84
    84
  • Thumbnail: Page 
85
    85
  • Thumbnail: Page 
86
    86
  • Thumbnail: Page 
87
    87
  • Thumbnail: Page 
88
    88
  • Thumbnail: Page 
89
    89
  • Thumbnail: Page 
90
    90