Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

The Involvement of Topoisomerase I in the Induction of DNA-Protein Crosslinks and DNA Single-Strand Breaks in Cells of Ultraviolet-Irradiated Human and Frog Cell Lines

Barry S. Rosenstein, Deepa Subramanian and Mark T. Muller
Radiation Research
Vol. 148, No. 6 (Dec., 1997), pp. 575-579
DOI: 10.2307/3579733
Stable URL: http://www.jstor.org/stable/3579733
Page Count: 5
  • Read Online (Free)
  • Download ($10.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
The Involvement of Topoisomerase I in the Induction of DNA-Protein Crosslinks and DNA Single-Strand Breaks in Cells of Ultraviolet-Irradiated Human and Frog Cell Lines
Preview not available

Abstract

Exposure of GM 4390 human skin fibroblasts and ICR 2A frog cells to $10\ {\rm kJ}\ {\rm m}^{-2}$ of ultraviolet B (UVB) radiation resulted in the formation of DNA-protein crosslinks (DPCs) and DNA single-strand breaks (SSBs). However, upon incubation, there were rapid increases in the yields of both DPCs and SSBs. An enhancement in these DNA alterations was detected within 12 min after irradiation and their levels continued to rise by 5-8-fold within 15 h after exposure to UV radiation. Using an antibody-based assay that measures covalent complex formation between topoisomerase (topo) I and genomic DNA, it was found that topo I is one of the proteins involved in these DPCs induced by UV radiation. The levels and rate of increase of topo I-DNA covalent complexes were similar to the UV-radiation-dependent formation of DPCs and SSBs. A UV-radiation-sensitive mutant frog cell line, DRP 153, was also examined and was found to be deficient in this induction of DPCs and SSBs by UV radiation. When these cells were transfected with the human SUVCC3 gene, the resulting transformant displayed kinetics for the induction of DPCs and SSBs similar to the human and parental frog cells. However, human topo I was not detected in the transformed frog cells, indicating that SUVCC3 does not encode topo I. It is likely that SUVCC3 encodes an associated enzymatic activity which permits normal stimulation of topo I-DNA covalent complexes in UV-irradiated cells.

Page Thumbnails

  • Thumbnail: Page 
575
    575
  • Thumbnail: Page 
576
    576
  • Thumbnail: Page 
577
    577
  • Thumbnail: Page 
578
    578
  • Thumbnail: Page 
579
    579