Space Radiation Cancer Risks and Uncertainties for Mars Missions

Francis A. Cucinotta, Walter Schimmerling, John W. Wilson, Leif E. Peterson, Gautam D. Badhwar, Premkumar B. Saganti and John F. Dicello
Radiation Research
Vol. 156, No. 5, Part 2 (Nov., 2001), pp. 682-688
Stable URL: http://www.jstor.org/stable/3580473
Page Count: 7
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Space Radiation Cancer Risks and Uncertainties for Mars Missions
We're having trouble loading this content. Download PDF instead.

Abstract

Projecting cancer risks from exposure to space radiation is highly uncertain because of the absence of data for humans and because of the limited radiobiology data available for estimating late effects from the high-energy and charge (HZE) ions present in the galactic cosmic rays (GCR). Cancer risk projections involve many biological and physical factors, each of which has a differential range of uncertainty due to the lack of data and knowledge. We discuss an uncertainty assessment within the linear-additivity model using the approach of Monte Carlo sampling from subjective error distributions that represent the lack of knowledge in each factor to quantify the overall uncertainty in risk projections. Calculations are performed using the space radiation environment and transport codes for several Mars mission scenarios. This approach leads to estimates of the uncertainties in cancer risk projections of 400-600% for a Mars mission. The uncertainties in the quality factors are dominant. Using safety standards developed for low-Earth orbit, long-term space missions (>90 days) outside the Earth's magnetic field are currently unacceptable if the confidence levels in risk projections are considered. Because GCR exposures involve multiple particle or δ-ray tracks per cellular array, our results suggest that the shape of the dose response at low dose rates may be an additional uncertainty for estimating space radiation risks.

Notes and References

This item contains 37 references.

References
  • 1
    National Academy of Sciences, Space Science Board, Radiation Haz- ards to Crews on Interplanetary Missions. Report of the Task Group on the Biological Effects of Space Radiation. National Academy Press, Washington, DC, 1997.
  • 2
    D. T. Goodhead, Initial events in the cellular effects of ionizing ra- diations: clustered damage in DNA. Int. J. Radiat. Biol. 65, 7-17 (1994).
  • 3
    D. A. Pierce, Y. Shimizu, D. L. Preston, M. Vaeth and K. Mabuchi, Studies of the mortality of the atomic bomb survivors, Report 12, Part I. Cancer: 1950-1990. Radiat. Res. 146, 1-27 (1996).
  • 4
    NCRP, Uncertainties in Fatal Cancer Risk Estimates used in Radi- ation Protection. Report 126, National Council on Radiation Protec- tion and Measurements, Bethesda, MD, 1997.
  • 5
    NCRP, Radiation Protection Guidance for Activities in Low-Earth Orbit. Report 132, National Council on Radiation Protection and Measurements, Bethesda, MD, 2000.
  • 6
    ICRP, Recommendations of the International Commission on Radio- logical Protection. Report 60, Annals of the ICRP, Vol. 21, No. 1- 3, Pergamon Press, London, 1990.
  • 7
    L. E. Peterson and E A. Cucinotta, Monte Carlo mixture model of lifetime cancer incidence risks for radiation on Shuttle and Interna- tional Space Station. Mutat. Res. 430, 327-335 (1999).
  • 8
    E A. Cucinotta, H. Nikjoo and D. T. Goodhead, Model for radial de- pendence of frequency distributions for energy imparted in nanometer volumes from HZE particles. Radiat. Res. 153, 459-468 (2000).
  • 9
    ICRU, The Quality Factor in Radiation Protection. Report 40, In- ternational Commission on Radiation Units and Measurement, Be- thesda, MD, 1986.
  • 10
    NCRP, The Relative Biological Effectiveness of Radiations of Differ- ent Quality, Report 104, National Council on Radiation Protection and Measurements, Bethesda, MD, 1990.
  • 11
    J. B. Storer and T. J. Mitchell, Limiting values for the RBE of fission neutrons at low doses for life shortening in mice. Radiat. Res. 97, 396-406 (1984).
  • 12
    C. Wolfe, J. Lafuma, R. Masse, M. Morin and A. M. Kellerer, Neu- tron RBE for induction of tumors with high lethality in Sprague- Dawley rats. Radiat. Res. 154, 412-420 (2000).
  • 13
    C. Borek, E. J. Hall and H. H. Rossi, Malignant transformation in cultured hamster embryo cells produced by X-rays, 430 keV mono- energetic neutrons, and heavy ions. Cancer Res. 38, 2997-3005 (1978).
  • 14
    R. J. M. Fry, P. Powers-Risius, E. L. Alpen and E. J. Ainsworth, High-LET radiation carcinogenesis. Radiat. Res. 104 (Suppl.), S188- S195 (1985).
  • 15
    E. L. Alpen, P. Powers-Risius, S. B. Curtis and R. DeGuzman, Tu- morigenic potential of high-Z, high-LET charged particle radiations. Radiat. Res. 136, 382-391 (1993).
  • 16
    A. Edwards, RBE for radiations in space and implications for space travel. Phys. Med. 7, 149-158 (2001).
  • 17
    E. J. Ainsworth, Early and late mammalian responses to heavy charged particles. Adv. Space Res. 6, 153-162 (1986).
  • 18
    E J. Burns, Y. Yin, S. J. Garte and S. Hosselete, Estimation of risk based on multiple events in radiation carcinogenesis of rat skin. Adv. Space Res. 14, 507-519 (1994).
  • 19
    J. Kiefer, U. Stol and E. Schneider, Mutation induction by heavy ions. Adv. Space Res. 14, 257-265 (1994).
  • 20
    M. Belli, E Cera, R. Cherubini, A. M. I. Haque, E Ianzini, G. Mos- chini, O. Sapora, G. Simone, M. A. Tabocchini and P. Tiverton, In- activation and mutation induction in V79 cells by low energy pro- tons: Re-evaluation of the results at the LNL facility. Int. J. Radiat. Biol. 63, 331-337 (1993).
  • 21
    J. Thacker, A. Stretch and M. A. Steven, Mutation and inactivation of cultured mammalian cells exposed to beams of accelerated heavy ions II. Chinese hamster V79 Cells. Int. J. Radiat. Biol. 36, 137-148 (1979).
  • 22
    T. C. Yang, L. M. Craise, M. T. Mei and C. A. Tobias, Neoplastic cell transformation by heavy charged particles. Radiat. Res. 104 (Suppl.), S177-S187 (1985).
  • 23
    S. G. Martin, R. C. Miller, C. R. Geard and E. J. Hall, The biological effectiveness of radon-progeny alpha particles. IV. Morphological transformation of Syrian hamster embryo cells at low dose. Radiat. Res. 143, 70-77 (1995).
  • 24
    H. Wu, M. Durante, K. George and T. C. Yang, Induction of chro- mosome aberrations in human cells by charged particles. Radiat. Res. 148 (Suppl.), S102-S107 (1997).
  • 25
    K. George, V. Willingham, H. Wu, D. Gridley, G. Nelson and E A. Cucinotta, Chromosome aberrations in human lymphocytes induced by 250 MeV protons: Effects of dose, dose rate, and shielding. Adv. Space Res., in press.
  • 26
    M. S. Sasaki, T. Takatsuji and Y. Ejima, The F value cannot be rule out as a chromosomal fingerprint of radiation quality. Radiat. Res. 150, 253-258 (1998).
  • 27
    T. Kawata, M. Durante, Y. Furusawa, K. George, N. Takai, H. Wu and E A. Cucinotta, Initial G2-chromosome damage induced in nor- mal human fibroblasts by high-LET particles. Int. J. Radiat. Biol. 77, 165-174 (2001).
  • 28
    E A. Cucinotta, R. Katz, J. W. Wilson, L. W. Townsend, J. L. Shinn and E Hajnal, Biological effectiveness of high-energy protons: Target fragmentation. Radiat. Res. 127, 130-137 (1991).
  • 29
    G. D. Badhwar, E A. Cucinotta and P. M. O'Neill, An analysis of interplanetary space radiation exposure for various solar cycles. Ra- diat. Res. 138, 201-208 (1994).
  • 30
    J. W. Wilson, M. Kim, W. Schimmerling, E E Badavi, S. A. Thi- beault, E A. Cucinotta, J. L. Shinn and R. Kiefer, Issues in space radiation protection. Health Phys. 68, 50-58 (1995).
  • 31
    G. D. Badhwar and E A. Cucinotta, A comparison on depth depen- dence of dose and linear energy transfer spectra in aluminum and polyethylene. Radiat. Res. 153, 1-8 (2000).
  • 32
    E A. Cucinotta, J. W. Wilson, J. L. Shinn and R. K. Tripathi, As- sessment and requirements of nuclear reaction databases for GCR transport in the atmosphere and structures. Adv. Space. Res. 21, 1753-1762 (1998).
  • 33
    E. Cardis, E. S. Gilbert, L. Carpenter, G. Howe, I. Kato, B. K. Arm- strong, V. Beral, G. Cowper, A. Douglas, J. Fix, S. A. Fry and L. D. Wiggs, Effects of low doses and dose rates of external ionizing ra- diation: Cancer mortality among nuclear industry workers in three countries. Radiat. Res. 142, 117-132 (1995).
  • 34
    R. L. Ullrich, Tumor induction in BALB/c mice after fractionated neutron or gamma irradiation. Radiat. Res. 93, 506-512 (1984).
  • 35
    H. Nagasawa and J. B. Little, Induction of sister chromatid exchanges by extremely low doses of alpha particles. Cancer Res. 52, 6394- 6396 (1992).
  • 36
    S. A. Lorimore, M. A. Kadhim, D. A. Pocock, D. Papworth, D. L. Stevens, D. T. Goodhead and E. G. Wright, Chromosomal instability in the descendants of unirradiated surviving cells after a-particle ir- radiation. Proc. Natl. Acad. Sci. USA 95, 5730-5733 (1998).
  • 37
    B. Vogelstein and K. M. Kinzler, The Genetic Basis of Human Can- cer. McGraw-Hill, New York, 1997.