Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Biophysical Mechanisms: A Component in the Weight of Evidence for Health Effects of Power-Frequency Electric and Magnetic Fields

John Swanson and Leeka Kheifets
Radiation Research
Vol. 165, No. 4 (Apr., 2006), pp. 470-478
Stable URL: http://www.jstor.org/stable/3581446
Page Count: 9
  • Read Online (Free)
  • Download ($10.00)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Biophysical Mechanisms: A Component in the Weight of Evidence for Health Effects of Power-Frequency Electric and Magnetic Fields
Preview not available

Abstract

Comparatively high exposures to power-frequency electric and magnetic fields produce established biological effects that are explained by accepted mechanisms and that form the basis of exposure guidelines. Lower exposures to magnetic fields (<1 μT average in the home) are classified as "possibly carcinogenic" on the basis of epidemiological studies of childhood leukemia. This classification takes into consideration largely negative laboratory data. Lack of biophysical mechanisms operating at such low levels also argues against causality. We survey around 20 biophysical mechanisms that have been proposed to explain effects at such low levels, with particular emphasis on plausibility: the principle that to produce biological effects, a mechanism must produce a "signal" larger than the "noise" that exists naturally. Some of the mechanisms are impossible, and some require specific conditions for which there is limited or no evidence as to their existence in a way that would make them relevant to human exposure. Others are predicted to become plausible above some level of field. We conclude that effects below 5 μT are implausible. At about 50 μT, no specific mechanism has been identified, but the basic problem of implausibility is removed. Above about 500 μT, there are established or likely effects from accepted mechanisms. The absence of a plausible biophysical mechanism at lower fields cannot be taken as proof that health effects of environmental electric and magnetic fields are impossible. Nevertheless, it is a relevant consideration in assessing the overall evidence on these fields.

Page Thumbnails

  • Thumbnail: Page 
470
    470
  • Thumbnail: Page 
471
    471
  • Thumbnail: Page 
472
    472
  • Thumbnail: Page 
473
    473
  • Thumbnail: Page 
474
    474
  • Thumbnail: Page 
475
    475
  • Thumbnail: Page 
476
    476
  • Thumbnail: Page 
477
    477
  • Thumbnail: Page 
478
    478