Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Viviparity in the Sea Star Cryptasterina hystera (Asterinidae): Conserved and Modified Features in Reproduction and Development

Maria Byrne
Biological Bulletin
Vol. 208, No. 2 (Apr., 2005), pp. 81-91
DOI: 10.2307/3593116
Stable URL: http://www.jstor.org/stable/3593116
Page Count: 11
  • Subscribe ($19.50)
  • Cite this Item
Viviparity in the Sea Star Cryptasterina hystera (Asterinidae): Conserved and Modified Features in Reproduction and Development
Preview not available

Abstract

Cryptasterina hystera has a highly derived life history with intragonadal development and juveniles that emerge from the parent's reproductive tract. The gonads are ovotestes with developing eggs separated from sperm by follicle cells. C. hystera has typical echinosperm that must enter the gonoduct of conspecifics to achieve fertilization. During oogenesis, an initial period of yolk accumulation is followed by hypertrophic lipid deposition, the major contributor to the increase in egg size. 1-Methyladenine induces egg maturation and ovulation, but the spawning component of the hormonal cascade is suppressed. This is the major alteration in reproduction associated with evolution of viviparity in C. hystera. The switch to viviparity was not accompanied by major change in gonad structure, indicating there were few or no anatomical constraints for evolution of a marsupial function for the gonad. Despite their intragonadal habitat, the brachiolaria are equipped for a planktonic life, swimming in gonadal fluid. During the gastrula stage, lipid provisions are released into the blastocoel where they are stored for juvenile development. The eggs of C. hystera have light and dark cytoplasmic regions that mark animal-vegetal polarity. The dark pigment provided a marker to follow the fate of vegetal cells. Live birth is rare in the Echinodermata and the incidence of this form of brooding in the phylum is reviewed.

Page Thumbnails

  • Thumbnail: Page 
81
    81
  • Thumbnail: Page 
82
    82
  • Thumbnail: Page 
83
    83
  • Thumbnail: Page 
84
    84
  • Thumbnail: Page 
85
    85
  • Thumbnail: Page 
86
    86
  • Thumbnail: Page 
87
    87
  • Thumbnail: Page 
88
    88
  • Thumbnail: Page 
89
    89
  • Thumbnail: Page 
90
    90
  • Thumbnail: Page 
91
    91