Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Optimal Contracts under Adverse Selection and Moral Hazard: A Continuous-Time Approach

Jaeyoung Sung
The Review of Financial Studies
Vol. 18, No. 3 (Autumn, 2005), pp. 1021-1073
Stable URL: http://www.jstor.org/stable/3598085
Page Count: 53
  • Download ($42.00)
  • Cite this Item
Optimal Contracts under Adverse Selection and Moral Hazard: A Continuous-Time Approach
Preview not available

Abstract

This article presents a continuous-time agency model in the presence of adverse selection and moral hazard with a risk-averse agent and a risk-neutral principal. Under the model setup, we show that the optimal controls are constant over time, and thus the optimal menu consists of contracts that are linear in the final outcome. We also show that when a moral hazard problem adds to an adverse selection problem, the monotonicity condition well known in the pure adverse selection literature needs to be modified to ensure the incentive compatibility for information revelation. The model is applied to a few managerial compensation problems involving managerial project selection and capital budgeting decisions. We argue that in the third-best world, the relationship between the volatility of the outcome and the sensitivity of the contract depends on interactions between the managerial cost and the firm's production functions. Contrary to conventional wisdom, sometimes the higher the volatility, the higher the sensitivity of the contract. The firm receiving good news sometimes chooses safer projects or invests less than it does with bad news. We also examine the effects of the observability of the volatility on corporate investment decisions.

Page Thumbnails

  • Thumbnail: Page 
[1021]
    [1021]
  • Thumbnail: Page 
1022
    1022
  • Thumbnail: Page 
1023
    1023
  • Thumbnail: Page 
1024
    1024
  • Thumbnail: Page 
1025
    1025
  • Thumbnail: Page 
1026
    1026
  • Thumbnail: Page 
1027
    1027
  • Thumbnail: Page 
1028
    1028
  • Thumbnail: Page 
1029
    1029
  • Thumbnail: Page 
1030
    1030
  • Thumbnail: Page 
1031
    1031
  • Thumbnail: Page 
1032
    1032
  • Thumbnail: Page 
1033
    1033
  • Thumbnail: Page 
1034
    1034
  • Thumbnail: Page 
1035
    1035
  • Thumbnail: Page 
1036
    1036
  • Thumbnail: Page 
1037
    1037
  • Thumbnail: Page 
1038
    1038
  • Thumbnail: Page 
1039
    1039
  • Thumbnail: Page 
1040
    1040
  • Thumbnail: Page 
1041
    1041
  • Thumbnail: Page 
1042
    1042
  • Thumbnail: Page 
1043
    1043
  • Thumbnail: Page 
1044
    1044
  • Thumbnail: Page 
1045
    1045
  • Thumbnail: Page 
1046
    1046
  • Thumbnail: Page 
1047
    1047
  • Thumbnail: Page 
1048
    1048
  • Thumbnail: Page 
1049
    1049
  • Thumbnail: Page 
1050
    1050
  • Thumbnail: Page 
1051
    1051
  • Thumbnail: Page 
1052
    1052
  • Thumbnail: Page 
1053
    1053
  • Thumbnail: Page 
1054
    1054
  • Thumbnail: Page 
1055
    1055
  • Thumbnail: Page 
1056
    1056
  • Thumbnail: Page 
1057
    1057
  • Thumbnail: Page 
1058
    1058
  • Thumbnail: Page 
1059
    1059
  • Thumbnail: Page 
1060
    1060
  • Thumbnail: Page 
1061
    1061
  • Thumbnail: Page 
1062
    1062
  • Thumbnail: Page 
1063
    1063
  • Thumbnail: Page 
1064
    1064
  • Thumbnail: Page 
1065
    1065
  • Thumbnail: Page 
1066
    1066
  • Thumbnail: Page 
1067
    1067
  • Thumbnail: Page 
1068
    1068
  • Thumbnail: Page 
1069
    1069
  • Thumbnail: Page 
1070
    1070
  • Thumbnail: Page 
1071
    1071
  • Thumbnail: Page 
1072
    1072
  • Thumbnail: Page 
1073
    1073