If you need an accessible version of this item please contact JSTOR User Support

A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood

Stéphane Guindon and Olivier Gascuel
Systematic Biology
Vol. 52, No. 5 (Oct., 2003), pp. 696-704
Stable URL: http://www.jstor.org/stable/3651071
Page Count: 9
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood
Preview not available

Abstract

The increase in the number of large data sets and the complexity of current probabilistic sequence evolution models necessitates fast and reliable phylogeny reconstruction methods. We describe a new approach, based on the maximum-likelihood principle, which clearly satisfies these requirements. The core of this method is a simple hill-climbing algorithm that adjusts tree topology and branch lengths simultaneously. This algorithm starts from an initial tree built by a fast distance-based method and modifies this tree to improve its likelihood at each iteration. Due to this simultaneous adjustment of the topology and branch lengths, only a few iterations are sufficient to reach an optimum. We used extensive and realistic computer simulations to show that the topological accuracy of this new method is at least as high as that of the existing maximum-likelihood programs and much higher than the performance of distance-based and parsimony approaches. The reduction of computing time is dramatic in comparison with other maximum-likelihood packages, while the likelihood maximization ability tends to be higher. For example, only 12 min were required on a standard personal computer to analyze a data set consisting of 500 rbcL sequences with 1,428 base pairs from plant plastids, thus reaching a speed of the same order as some popular distance-based and parsimony algorithms. This new method is implemented in the PHYML program, which is freely available on our web page: http://www.lirmm.fr/w3ifa/MAAS/.

Page Thumbnails

  • Thumbnail: Page 
696
    696
  • Thumbnail: Page 
697
    697
  • Thumbnail: Page 
698
    698
  • Thumbnail: Page 
699
    699
  • Thumbnail: Page 
700
    700
  • Thumbnail: Page 
701
    701
  • Thumbnail: Page 
702
    702
  • Thumbnail: Page 
703
    703
  • Thumbnail: Page 
704
    704