Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Interannual Variability in Terrestrial Net Primary Production: Exploration of Trends and Controls on Regional to Global Scales

Christopher S. Potter, Steven Klooster and Vanessa Brooks
Ecosystems
Vol. 2, No. 1 (Jan. - Feb., 1999), pp. 36-48
Published by: Springer
Stable URL: http://www.jstor.org/stable/3658596
Page Count: 13
  • Download ($43.95)
  • Cite this Item
Interannual Variability in Terrestrial Net Primary Production: Exploration of Trends and Controls on Regional to Global Scales
Preview not available

Abstract

Climate and biophysical regulation of terrestrial plant production and interannual responses to anomalous events were investigated using the NASA Ames model version of CASA (Carnegie-Ames-Stanford Approach) in a transient simulation mode. This ecosystem model has been calibrated for simulations driven by satellite vegetation index data from the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) over the mid-1980s. Relatively large net source fluxes of carbon were estimated from terrestrial vegetation about 6 months to 1 year following El Niño events of 1983 and 1987, whereas the years 1984 and 1988 showed a drop in net primary production (NPP) of 1-2 Pg ($10^{15}\ {\rm g}$) C from their respective previous years. Zonal discrimination of model results implies that the northern hemisphere low latitudes could account for almost the entire 2 Pg C decrease in global terrestrial NPP predicted from 1983 to 1984. Model estimates further suggest that from 1985 to 1988, the northern middle-latitude zone (between 30° and 60°N) was the principal region driving progressive increases in NPP, mainly by an expanded growing season moving toward the zonal latitude extremes. Comparative regional analysis of model controls on NPP reveals that although Normalized Difference Vegetation Index "greenness" can alone account for 30%-90% of the variation in NPP interannual anomalies, temperature or radiation loading can have a fairly significant 1-year lag effect on annual NPP at middle- to high-latitude zones, whereas rainfall amount and temperature drying effects may carry over with at least a 2-year lag time to influence NPP in semiarid tropical zones.

Page Thumbnails

  • Thumbnail: Page 
36
    36
  • Thumbnail: Page 
37
    37
  • Thumbnail: Page 
38
    38
  • Thumbnail: Page 
39
    39
  • Thumbnail: Page 
40
    40
  • Thumbnail: Page 
41
    41
  • Thumbnail: Page 
42
    42
  • Thumbnail: Page 
43
    43
  • Thumbnail: Page 
44
    44
  • Thumbnail: Page 
45
    45
  • Thumbnail: Page 
46
    46
  • Thumbnail: Page 
47
    47
  • Thumbnail: Page 
48
    48