If you need an accessible version of this item please contact JSTOR User Support

Falcon versus Grouse: Flight Adaptations of a Predator and Its Prey

C. J. Pennycuick, Mark R. Fuller, Jack J. Oar and Sean J. Kirkpatrick
Journal of Avian Biology
Vol. 25, No. 1 (Mar., 1994), pp. 39-49
Published by: Wiley on behalf of Nordic Society Oikos
DOI: 10.2307/3677292
Stable URL: http://www.jstor.org/stable/3677292
Page Count: 11
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
Falcon versus Grouse: Flight Adaptations of a Predator and Its Prey
Preview not available

Abstract

Several falcons were trained to fly along a 500 m course to a lure. The air speeds of the more consistent performers averaged about 1.5 times their calculated minimum power speeds, and occasionally reached 2.1 times the minimum power speed. Wing beat frequencies of all the falcons were above those estimated from earlier field observations, and the same was true of wild Sage Grouse Centrocercus urophasianus, a regular falconer's quarry in the study area. Measurements of grouse killed by falcons showed that their wings were short, with broad slotted tips, whereas the falcons' wings were longer in relation to their body mass, and tapered. The short wings of grouse result in fast flight, high power requirements, and reduced capacity for aerobic flight. Calculations indicated that the grouse should fly faster than the falcons, and had the large amount of flight muscle needed to do so, but that the falcons would be capable of prolonged aerobic flight, whereas the grouse probably would not. We surmise that Sage Grouse cannot fly continuously without incurring an oxygen debt, and are therefore not long-distance migrants, although this limitation is partly due to their large size, and would not apply to smaller galliform birds such as ptarmigan Lagopus spp. The wing action seen in video recordings of the falcons was not consistent with the maintenance of constant circulation. We call it "chase mode" because it appears to be associated with a high level of muscular exertion, without special regard to fuel economy. It shows features in common with the "bounding" flight of passerines.

Page Thumbnails

  • Thumbnail: Page 
39
    39
  • Thumbnail: Page 
40
    40
  • Thumbnail: Page 
41
    41
  • Thumbnail: Page 
42
    42
  • Thumbnail: Page 
43
    43
  • Thumbnail: Page 
44
    44
  • Thumbnail: Page 
45
    45
  • Thumbnail: Page 
46
    46
  • Thumbnail: Page 
47
    47
  • Thumbnail: Page 
48
    48
  • Thumbnail: Page 
49
    49