Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Repeated Grazing of a Salt Marsh Grass by Moulting Greylag Geese Anser anser: Does Sequential Harvesting Optimise Biomass or Protein Gain?

Anthony D. Fox and Johnny Kahlert
Journal of Avian Biology
Vol. 34, No. 1 (Mar., 2003), pp. 89-96
Published by: Wiley on behalf of Nordic Society Oikos
Stable URL: http://www.jstor.org/stable/3677646
Page Count: 8
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Repeated Grazing of a Salt Marsh Grass by Moulting Greylag Geese Anser anser: Does Sequential Harvesting Optimise Biomass or Protein Gain?
Preview not available

Abstract

The effects of simulated goose grazing on common saltmarsh-grass Puccinellia maritima plants were tested on a Danish salt marsh during the flightless moulting period of greylag geese Anser anser (3-21 June 1998). Plants in an area exclosed from the influence of grazing and the nutrient effects of goose faeces were subject to removal of youngest lamina at 3-, 6-, 9- and 18-day intervals during this period. Average biomass and protein accumulation between harvests was highest at defoliation intervals of 9 days or more. Field observations from two separate study areas demonstrated geese returned to regraze the Puccinellia sward after 6-8 days and oesophageal contents from feeding geese showed selection for lamina lengths consistent with the results of clipping every 6 days. Geese therefore regrazed Puccinellia patches at shorter intervals than expected were they to maximise their intake of biomass or protein at each visit. However, total cumulative lamina elongation, equivalent to the long term gain during the entire moult period, showed no significant difference between the three most intensive defoliation treatments, which were significantly greater than those of plants defoliated at 18 day intervals. Highest overall lamina protein levels were maintained at 6- and 9-day defoliation intervals. This suggests geese regrazed Puccinellia patches at a rate that maximised their number of harvests during the flightless period, but maintained highest protein levels and overall biomass in the sward. This suggests, in line with earlier studies, that moulting greylag geese combine dietary selection, reduced nitrogen excretion and regrazing patterns to meet protein demands during regrowth of flight feathers.

Page Thumbnails

  • Thumbnail: Page 
89
    89
  • Thumbnail: Page 
90
    90
  • Thumbnail: Page 
91
    91
  • Thumbnail: Page 
92
    92
  • Thumbnail: Page 
93
    93
  • Thumbnail: Page 
94
    94
  • Thumbnail: Page 
95
    95
  • Thumbnail: Page 
96
    96