Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

Globally Convergent Algorithms for Convex Programming

Eric Rosenberg
Mathematics of Operations Research
Vol. 6, No. 3 (Aug., 1981), pp. 437-444
Published by: INFORMS
Stable URL: http://www.jstor.org/stable/3689186
Page Count: 8
  • Download ($30.00)
  • Cite this Item
Globally Convergent Algorithms for Convex Programming
Preview not available

Abstract

We consider solving a (minimization) convex program by sequentially solving a (minimization) convex approximating subproblem and then executing a line search on an exact penalty function. Each subproblem is constructed from the current estimate of a solution of the given problem, possibly together with other information. Under mild conditions, solving the current subproblem generates a descent direction for the exact penalty function. Minimizing the exact penalty function along the current descent direction provides a new estimate of a solution, and a new subproblem is formed. For any arbitrary starting estimate, this scheme generates a sequence of estimates that converges to a solution of the given problem. Moreover, the functions defining the given problem and each subproblem need not be differentiable.

Page Thumbnails

  • Thumbnail: Page 
437
    437
  • Thumbnail: Page 
438
    438
  • Thumbnail: Page 
439
    439
  • Thumbnail: Page 
440
    440
  • Thumbnail: Page 
441
    441
  • Thumbnail: Page 
442
    442
  • Thumbnail: Page 
443
    443
  • Thumbnail: Page 
444
    444