Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support

The Complexity of Flowshop and Jobshop Scheduling

M. R. Garey, D. S. Johnson and Ravi Sethi
Mathematics of Operations Research
Vol. 1, No. 2 (May, 1976), pp. 117-129
Published by: INFORMS
Stable URL: http://www.jstor.org/stable/3689278
Page Count: 13
  • Download ($30.00)
  • Cite this Item
If you need an accessible version of this item please contact JSTOR User Support
The Complexity of Flowshop and Jobshop Scheduling
Preview not available

Abstract

NP-complete problems form an extensive equivalence class of combinatorial problems for which no nonenumerative algorithms are known. Our first result shows that determining a shortest-length schedule in an m-machine flowshop is NP-complete for m ≥ 3. (For m = 2, there is an efficient algorithm for finding such schedules.) The second result shows that determining a minimum mean-flow-time schedule in an m-machine flowshop is NP-complete for every m ≥ 2. Finally we show that the shortest-length schedule problem for an m-machine jobshop is NP-complete for every m ≥ 2. Our results are strong in that they hold whether the problem size is measured by number of tasks, number of bits required to express the task lengths, or by the sum of the task lengths.

Page Thumbnails

  • Thumbnail: Page 
117
    117
  • Thumbnail: Page 
118
    118
  • Thumbnail: Page 
119
    119
  • Thumbnail: Page 
120
    120
  • Thumbnail: Page 
121
    121
  • Thumbnail: Page 
122
    122
  • Thumbnail: Page 
123
    123
  • Thumbnail: Page 
124
    124
  • Thumbnail: Page 
125
    125
  • Thumbnail: Page 
126
    126
  • Thumbnail: Page 
127
    127
  • Thumbnail: Page 
128
    128
  • Thumbnail: Page 
129
    129