If you need an accessible version of this item please contact JSTOR User Support

On the Complexity of Cooperative Solution Concepts

Xiaotie Deng and Christos H. Papadimitriou
Mathematics of Operations Research
Vol. 19, No. 2 (May, 1994), pp. 257-266
Published by: INFORMS
Stable URL: http://www.jstor.org/stable/3690220
Page Count: 10
  • Download PDF
  • Cite this Item

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If you need an accessible version of this item please contact JSTOR User Support
On the Complexity of Cooperative Solution Concepts
Preview not available

Abstract

We study from a complexity theoretic standpoint the various solution concepts arising in cooperative game theory. We use as a vehicle for this study a game in which the players are nodes of a graph with weights on the edges, and the value of a coalition is determined by the total weight of the edges contained in it. The Shapley value is always easy to compute. The core is easy to characterize when the game is convex, and is intractable (NP-complete) otherwise. Similar results are shown for the kernel, the nucleolus, the ε-core, and the bargaining set. As for the von Neumann-Morgenstern solution, we point out that its existence may not even be decidable. Many of these results generalize to the case in which the game is presented by a hypergraph with edges of size k > 2.

Page Thumbnails

  • Thumbnail: Page 
257
    257
  • Thumbnail: Page 
258
    258
  • Thumbnail: Page 
259
    259
  • Thumbnail: Page 
260
    260
  • Thumbnail: Page 
261
    261
  • Thumbnail: Page 
262
    262
  • Thumbnail: Page 
263
    263
  • Thumbnail: Page 
264
    264
  • Thumbnail: Page 
265
    265
  • Thumbnail: Page 
266
    266