Access

You are not currently logged in.

Access your personal account or get JSTOR access through your library or other institution:

login

Log in to your personal account or through your institution.

If You Use a Screen Reader

This content is available through Read Online (Free) program, which relies on page scans. Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.

Responses of the Green Algal Foliose Lichen Platismatia glauca to Increased Nitrogen Supply

Kristin Palmqvst and Lena Dahlman
The New Phytologist
Vol. 171, No. 2 (2006), pp. 343-356
Published by: Wiley on behalf of the New Phytologist Trust
Stable URL: http://www.jstor.org/stable/3694570
Page Count: 14
  • Read Online (Free)
  • Subscribe ($19.50)
  • Cite this Item
Since scans are not currently available to screen readers, please contact JSTOR User Support for access. We'll provide a PDF copy for your screen reader.
Preview not available
Preview not available

Abstract

• Nitrogen (N) availability and light exposure were manipulated under field conditions to study responses to altered resource supply in the green algal lichen Platismatia glauca. • The lichen was fertilized with different concentrations and frequencies of ammonium, nitrate or glutamine under different light regimes for 2-3 months. Responses were followed from the intact thallus to the cellular level. • Despite significant differences in overall light exposure, light conditions were not significantly different among treatments when the lichens were wet and active. Ammonium was the preferred N source, followed by glutamine and then nitrate. Thallus N concentration as well as the chlorophyll a (Chl a) concentration increased 3-4-fold at the highest ammonium concentration, while the mycobiont ergosterol concentration remained unaltered. Growth was significantly enhanced by the enhanced N supply, with the increase in dry weight varying from 3 to 30%. Variation in Chl a concentration explained 31% of this variation, suggesting a causal link to the increased growth rate. • Platismatia glauca responded to increased N availability by increasing its growth rate and carbon assimilation capacity through increased investments in the photobiont cells. This suggests a tight regulation of resource investments and metabolic pathways between the symbionts of this lichen.

Page Thumbnails

  • Thumbnail: Page 
343
    343
  • Thumbnail: Page 
344
    344
  • Thumbnail: Page 
345
    345
  • Thumbnail: Page 
346
    346
  • Thumbnail: Page 
347
    347
  • Thumbnail: Page 
348
    348
  • Thumbnail: Page 
349
    349
  • Thumbnail: Page 
350
    350
  • Thumbnail: Page 
351
    351
  • Thumbnail: Page 
352
    352
  • Thumbnail: Page 
353
    353
  • Thumbnail: Page 
354
    354
  • Thumbnail: Page 
355
    355
  • Thumbnail: Page 
356
    356